Skip to main content

Advertisement

Log in

Recent advances of ferro-/piezoelectric polarization effect for dendrite-free metal anodes

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal anodes based on plating/stripping electrochemistry, for instance, common alkaline metal lithium (Li), sodium (Na), potassium (K), polyvalent metal magnesium (Mg), aluminum (Al), calcium (Ca) and zinc (Zn) are imminently evoked and increasingly researched for future generation high-energy-density rechargeable batteries due to their large theoretical capacity, low electrochemical potential, and superior electronic conductivity in recent years. However, the uncontrolled dendrite formation issue induces low Coulombic efficiency, short lifespan, and hazardous security risks, hindering the actual applications of metal batteries. Among various solutions, the utilization of ferro-/piezoelectric materials for metal anodes displays active effects on decreasing local current density, suppressing dendrite growth, and tolerating volume expansion benefits from the unique ferro-/piezoelectric polarization effect. This review presents the research progress of ferro-/piezoelectric polarization effect for regulating the dendritic growth of metal anodes for the first time. First, the current challenges and strategies of metal anodes are proposed. Then, ferro-/piezoelectric materials and their working principle are discussed. Finally, the recent research progress of ferroelectric and piezoelectric materials on dynamic regulation of dendrite growth is summarized, and the future perspectives are prospected. We hope this review could draw more attention in designing metal anodes with self-polarization materials and promoting their practical applications.

Graphical abstract

摘要

基于沉积/剥离电化学机制的金属负极,如常见的碱金属锂(Li)、钠(Na)、钾(K)和多价金属镁(Mg)、铝(Al)、钙(Ca)、锌(Zn)等,由于其理论容量大、电化学电位低、电子导电性好等优点,近年来在未来一代高能量密度可充电电池中得到了越来越多的研究。 但由于枝晶形成不可控,库仑效率低,寿命短,存在安全隐患,阻碍了金属电池的实际应用。在各种解决方案中,利用铁/压电材料用于金属负极方面,由于其独特的铁/压电极化效应,在降低局部电流密度、抑制枝晶生长和限制体积膨胀方面表现出良好的作用。本文首次综述了铁电/压电极化效应调节金属负极枝晶生长的研究进展。首先,提出了目前金属负极面临的挑战和对策。然后讨论了铁电/压电材料及其工作原理。最后,总结了近年来铁电材料和压电材料在枝晶生长动态调控方面的研究进展,并对未来研究方向进行了展望。希望本文能引起人们对利用自发极化材料设计金属负极的更多重视,促进其实际应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Goodenough JB. Energy storage materials: a perspective. Energy Storage Mater. 2015;1:158. https://doi.org/10.1016/j.ensm.2015.07.001.

    Article  Google Scholar 

  2. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013. https://doi.org/10.1038/natrevmats.2016.13.

    Article  CAS  Google Scholar 

  3. Sun PP, Zhang YH, Shi H, Shi FN. Controllable one step electrochemical synthesis of PANI encapsulating 3d–4f bimetal MOFs heterostructures as electrode materials for high-performance supercapacitors. Chem Eng J. 2022;427:130836. https://doi.org/10.1016/j.cej.2021.130836.

    Article  CAS  Google Scholar 

  4. Liang F, Xia, Zhang Y, Zhao S, Yang S, Liu X. Lithium plating mechanism, model and fast charging strategy of lithium-ion batteries under fast charging condition. Chin J Rare Met. 2022;46(9):1235. https://doi.org/10.13373/j.cnki.cjrm.XY21030007.

    Article  Google Scholar 

  5. Van Noorden R. The rechargeable revolution: a better battery. Nature. 2014;507:26. https://doi.org/10.1038/507026a.

    Article  CAS  Google Scholar 

  6. Zhang C, Wang A, Zhang J, Guan X, Tang W, Luo J. 2D materials for lithium/sodium metal anodes. Adv Energy Mater. 2018;8:1802833. https://doi.org/10.1002/aenm.201802833.

    Article  CAS  Google Scholar 

  7. Chen J, Wang PF, Zhang YH, Yang DX, Li X, Shi FN. Rapid construction of surface CuO-rich Co3O4/CuO composites as anodes for high-performance lithium-ion batteries. J Solid State Chem. 2023;318:123787. https://doi.org/10.1016/j.jssc.2022.123787.

    Article  CAS  Google Scholar 

  8. Liu Y, Sun G, Cai X, Yang F, Ma C, Xue M, Tao X. Nanostructured strategies towards boosting organic lithium-ion batteries. J Energy Chem. 2021;54:179. https://doi.org/10.1016/j.jechem.2020.05.021.

    Article  CAS  Google Scholar 

  9. Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1:16141. https://doi.org/10.1038/nenergy.2016.141.

    Article  Google Scholar 

  10. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12:194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  Google Scholar 

  11. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135:1167. https://doi.org/10.1021/ja3091438.

    Article  CAS  Google Scholar 

  12. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  13. Fu Y, Wei Q, Zhang G, Sun S. Batteries: advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8:1870057. https://doi.org/10.1002/aenm.201702849.

    Article  CAS  Google Scholar 

  14. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636. https://doi.org/10.1021/cr500192f.

    Article  CAS  Google Scholar 

  15. Zhang YH, Lu MN, Li Q, Shi FN. Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery. J Solid State Chem. 2022;310:123072. https://doi.org/10.1016/j.jssc.2022.123072.

    Article  CAS  Google Scholar 

  16. Sun Y, Li S, Wang C, Qian Y, Zheng S, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  Google Scholar 

  17. Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 2019;1:100003. https://doi.org/10.1016/j.enchem.2019.100003.

    Article  Google Scholar 

  18. Kang Y, Zhang YH, Shi Q, Shi H, Xue D, Shi FN. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries. J Colloid Interf Sci. 2021;585:705. https://doi.org/10.1016/j.jcis.2020.10.050.

    Article  CAS  Google Scholar 

  19. Zhao Y, Adair KR, Sun X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci. 2018;11:2673. https://doi.org/10.1039/C8EE01373J.

    Article  CAS  Google Scholar 

  20. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28:1802938. https://doi.org/10.1002/adfm.201802938.

    Article  CAS  Google Scholar 

  21. Yang DX, Wang PF, Liu HY, Zhang YH, Sun PP, Shi FN. Facile synthesis of ternary transition metal-organic framework and its stable lithium storage properties. J Solid State Chem. 2022;309:122947. https://doi.org/10.1016/j.jssc.2022.122947.

    Article  CAS  Google Scholar 

  22. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3:2480. https://doi.org/10.1021/acsenergylett.8b01426.

    Article  CAS  Google Scholar 

  23. Cai K, Jing X, Zhang Y, Li L, Lang X. A novel reed-leaves like aluminum doped manganese oxide presetting sodium-ion constructed by coprecipitation method for high electrochemical performance sodium-ion battery. Inter J Energ Res. 2022;46:14570. https://doi.org/10.1002/er.8090.

    Article  CAS  Google Scholar 

  24. Zhao Y, Dong G, Zhang M, Wang D, Chen Y, Cao D, Zhu K, Chen G. Surface-engineered Ti3C2Tx MXene enabling rapid sodium/potassium ion storage. 2D Mater. 2023;10:014005. https://doi.org/10.1088/2053-1583/ac96ff.

    Article  Google Scholar 

  25. Shen X, Zhang XQ, Ding F, Huang JQ, Xu R, Chen X, Yan C, Su FY, Chen CM, Liu X, Zhang Q. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv. 2021;2021:1205324. https://doi.org/10.34133/2021/1205324.

    Article  CAS  Google Scholar 

  26. Ma Y, Wei L, Gu Y, Zhao L, Jing Y, Mu Q, Su Y, Yuan X, Peng Y, Deng Z. Insulative ion-conducting lithium selenide as the artificial solid-electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett. 2021;21:7354. https://doi.org/10.1021/acs.nanolett.1c02658.

    Article  CAS  Google Scholar 

  27. Huang J, Guo Z, Ma Y, Bin D, Wang Y, Xia Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods. 2019;3:1800272. https://doi.org/10.1002/smtd.201800272.

    Article  CAS  Google Scholar 

  28. Song J, Sahadeo E, Noked M, Lee SB. Mapping the challenges of magnesium battery. J Phys Chem Lett. 2016;7:1736. https://doi.org/10.1021/acs.jpclett.6b00384.

    Article  CAS  Google Scholar 

  29. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1. https://doi.org/10.1016/j.pmatsci.2014.04.001.

    Article  CAS  Google Scholar 

  30. Yang H, Li H, Li J, Sun Z, He K, Cheng HM, Li F. The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Edit. 2019;58:11978. https://doi.org/10.1002/anie.201814031.

    Article  CAS  Google Scholar 

  31. Zhang Y, Liu S, Ji Y, Ma J, Yu H. Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv Mater. 2018;30:1706310. https://doi.org/10.1002/adma.201706310.

    Article  CAS  Google Scholar 

  32. Gummow RJ, Vamvounis G, Kannan MB, He Y. Calcium-ion batteries: current state-of-the-art and future perspectives. Adv Mater. 2018;30:1801702. https://doi.org/10.1002/adma.201801702.

    Article  CAS  Google Scholar 

  33. Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Accounts Chem Res. 2019;52:3223. https://doi.org/10.1021/acs.accounts.9b00437.

    Article  CAS  Google Scholar 

  34. Jana A, Woo SI, Vikrant KSN, García RE. Electrochemomechanics of lithium dendrite growth. Energy Environ Sci. 2019;12:3595. https://doi.org/10.1039/C9EE01864F.

    Article  CAS  Google Scholar 

  35. Sun X, Zhang X, Ma Q, Guan X, Wang W, Luo J. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew Chem Int Edit. 2020;59:6665. https://doi.org/10.1002/anie.201912217.

    Article  CAS  Google Scholar 

  36. Zhang JG, Xu W, Henderson WA. Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Edited by Zhang JG, Xu W, Henderson WA. Switzerland: Springer. 2016.1. https://doi.org/10.1007/978-3-319-44054-5.

  37. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3:1500213. https://doi.org/10.1002/advs.201500213.

    Article  CAS  Google Scholar 

  38. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303. https://doi.org/10.1021/cr030203g.

    Article  CAS  Google Scholar 

  39. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114:11503. https://doi.org/10.1021/cr500003w.

    Article  CAS  Google Scholar 

  40. Wu M, Wen Z, Liu Y, Wang X, Huang L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J Power Sources. 2011;196:8091. https://doi.org/10.1016/j.jpowsour.2011.05.035.

    Article  CAS  Google Scholar 

  41. Wang Z, Sun Y, Qian Z, Wang R. Advances in lithium metal batteries based on surface interface reaction and optimization. Chem J Chin U. 2021;4:1017. https://doi.org/10.7503/cjcu20200508.

    Article  CAS  Google Scholar 

  42. Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen LQ, Wang D. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat Energy. 2018;3:1076. https://doi.org/10.1038/s41560-018-0276-z.

    Article  CAS  Google Scholar 

  43. Chi SS, Qi XG, Hu YS, Fan LZ. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater. 2018;8:1702764. https://doi.org/10.1002/aenm.201702764.

    Article  CAS  Google Scholar 

  44. Qin L, Lei Y, Wang H, Dong J, Wu Y, Zhai D, Kang F, Tao Y, Yang QH. Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes. Adv Energy Mater. 2019;9:1901427. https://doi.org/10.1002/aenm.201901427.

    Article  CAS  Google Scholar 

  45. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016;5:139. https://doi.org/10.1016/j.ensm.2016.07.003.

    Article  Google Scholar 

  46. Xu L, Li J, Liu C, Zou G, Hou H, Ji X. Research progress in inorganic solid-state electrolytes for sodium-ion batteries. Acta Phys-Chim Sin. 2020;36:75. https://doi.org/10.3866/PKU.WHXB201905013.

    Article  CAS  Google Scholar 

  47. Gao H, Xue L, Xin S, Goodenough JB. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew Chem Int Ed. 2018;57:5447. https://doi.org/10.1002/ange.201802248.

    Article  Google Scholar 

  48. Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1:317. https://doi.org/10.1016/j.matt.2019.05.016.

    Article  Google Scholar 

  49. Wang H, Hu J, Dong J, Lau KC, Qin L, Lei Y, Li B, Zhai D, Wu Y, Kang F. Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv Energy Mater. 2019;9:1902697. https://doi.org/10.1002/aenm.201902697.

    Article  CAS  Google Scholar 

  50. Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Cho W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat Nanotechnol. 2018;13:337. https://doi.org/10.1038/s41565-018-0061-y.

    Article  CAS  Google Scholar 

  51. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol. 2016;11:626. https://doi.org/10.1038/nnano.2016.32.

    Article  CAS  Google Scholar 

  52. Liu Y, Tzeng YK, Lin D, Pei A, Lu H, Melosh NA, Shen ZX, Chu S. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule. 2018;2:1595. https://doi.org/10.1016/j.joule.2018.05.007.

    Article  CAS  Google Scholar 

  53. Liang X, Pang Q, Kochetkov IR, Sempere MS, Huang H, Sun X, Nazar LF. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy. 2017;2:17119. https://doi.org/10.1038/nenergy.2017.119.

    Article  CAS  Google Scholar 

  54. Tu Z, Choudhury S, Zachman MJ, Wei S, Zhang K, Kourkoutis LF, Archer LA. Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat Energy. 2018;3:310. https://doi.org/10.1038/s41560-018-0096-1.

    Article  CAS  Google Scholar 

  55. Gong Z, Lian C, Wang P, Huang K, Zhu K, Ye K, Yan J, Wang G, Cao D. Lithiophilic Cu-Li2O matrix on a Cu collector to stabilize lithium deposition for lithium metal batteries. Energy Environ Mater. 2022;5:1270. https://doi.org/10.1002/eem2.12243.

    Article  CAS  Google Scholar 

  56. Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater. 2019;18(4):384. https://doi.org/10.1038/s41563-019-0305-8.

    Article  CAS  Google Scholar 

  57. Lopez J, Pei A, Oh JY, Wang GJN, Cui Y, Bao Z. Effects of polymer coatings on electrodeposited lithium metal. J Am Chem Soc. 2018;140(37):11735. https://doi.org/10.1021/jacs.8b06047.

    Article  CAS  Google Scholar 

  58. Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961. https://doi.org/10.1038/nmat4041.

    Article  CAS  Google Scholar 

  59. Tu Z, Zachman MJ, Choudhury S, Khan KA, Zhao Q, Kourkoutis LF, Archer LA. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem Mater. 2018;30(16):5655. https://doi.org/10.1021/acs.chemmater.8b01996.

    Article  CAS  Google Scholar 

  60. Xue P, Sun C, Li H, Liang J, Lai C. Superlithiophilic amorphous SiO2-TiO2 distributed into porous carbon skeleton enabling uniform lithium deposition for stable lithium metalbatteries. Adv Sci. 2019;6(18):1900943. https://doi.org/10.1002/advs.201900943.

    Article  CAS  Google Scholar 

  61. Cai K, Wang T, Wang Z, Wang J, Li L, Yao C, Lang X. A cocklebur-like sulfur host with the TiO2-VOx heterostructure efficiently implementing one-step adsorption-diffusion-conversion towards long-life Li-S batteries. Compos Part B. 2023;249:110410. https://doi.org/10.1016/j.compositesb.2022.110410.

    Article  CAS  Google Scholar 

  62. Nie Y, Dai X, Wang J, Qian Z, Wang Z, Guo H, Yan G, Jiang D, Wang R. Facile and scalable fabrication of lithiophilic CuxO enables stable lithium metal anode. J Energy Chem. 2022;75:285. https://doi.org/10.1016/j.jechem.2022.08.013.

    Article  CAS  Google Scholar 

  63. Park K, Goodenough JB. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv Energy Mater. 2017;7(19):1700732. https://doi.org/10.1002/aenm.201700732.

    Article  CAS  Google Scholar 

  64. Li Y, Sun Y, Pei A, Chen K, Vailionis A, Li Y, Zheng G, Sun J, Cui Y. Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Central Sci. 2018;4(1):97. https://doi.org/10.1021/acscentsci.7b00480.

    Article  CAS  Google Scholar 

  65. Wang J, Wylie-van Eerd B, Sluka T, Sandu C, Cantoni M, Wei XK, Kvasov A, McGilly LJ, Gemeiner P, Dkhil B, Tagantsev A, Trodahl J, Setter N. Negative-pressure-induced enhancement in a freestanding ferroelectric. Nat Mater. 2015;14:985. https://doi.org/10.1038/nmat4365.

    Article  CAS  Google Scholar 

  66. Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506. https://doi.org/10.1038/nature01501.

    Article  CAS  Google Scholar 

  67. Cui Y, Briscoe J, Dunn S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-influence on the carrier separation and stern layer formation. Chem Mater. 2013;25:4215. https://doi.org/10.1021/cm402092f.

    Article  CAS  Google Scholar 

  68. Uchino K. Advanced piezoelectric materials, Edited by Uchino K. Duxford: Woodhead Publishing Ltd. 2010.1. https://doi.org/10.1533/9781845699758.3.561.

  69. Heywang W, Lubitz K, Wersing W. Piezoelectricity: Evolution and Future of a Technology. Edited by Heywang W, Lubitz K, Wersing W. Berlin: Springer. 2008.1. https://doi.org/10.1007/978-3-540-68683-5.

  70. Xie K, You Y, Yuan K, Lu W, Zhang K, Xu F, Ye M, Ke S, Shen C, Zeng X, Fan X, Wei B. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement. Adv Mater. 2017;29:1604724. https://doi.org/10.1002/adma.201604724.

    Article  CAS  Google Scholar 

  71. Song WJ, Joo SH, Kim DH, Hwang C, Jung GY, Bae S, Son Y, Cho J, Song HK, Kwak SK, Park S, Kang SJ. Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. Nano Energy. 2017;32:255. https://doi.org/10.1016/j.nanoen.2016.12.037.

    Article  CAS  Google Scholar 

  72. Huang YF, Gu T, Rui G, Shi P, Fu W, Chen L, Liu X, Zeng J, Kang B, Yan Z, Stadler FJ, Zhu L, Kang F, He YB. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ Sci. 2021;14:6021. https://doi.org/10.1039/D1EE02663A.

    Article  CAS  Google Scholar 

  73. Zhang XG. Corrosion and Electrochemistry of Zinc. Edited by Zhang XG. Boston: Springer. 1996.1. https://doi.org/10.1007/978-1-4757-9877-7_4.

  74. Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y. Alkali-metal anodes: from lab to market. Joule. 2019;3:2334. https://doi.org/10.1016/j.joule.2019.07.027.

    Article  CAS  Google Scholar 

  75. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6:8058. https://doi.org/10.1038/ncomms9058.

    Article  CAS  Google Scholar 

  76. Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater. 2017;27:1606422. https://doi.org/10.1002/adfm.201606422.

    Article  CAS  Google Scholar 

  77. Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater. 2016;28:6932. https://doi.org/10.1002/adma.201601409.

    Article  CAS  Google Scholar 

  78. Zou P, Wang Y, Chiang SW, Wang X, Kang F, Yang C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat Commun. 2018;9:464. https://doi.org/10.1038/s41467-018-02888-8.

    Article  CAS  Google Scholar 

  79. Umh HN, Park J, Yeo J, Jung S, Nam, Yi IJ. Lithium metal anode on a copper dendritic superstructure. Electrochem Commun. 2019;99:27. https://doi.org/10.1016/j.elecom.2018.12.015.

    Article  CAS  Google Scholar 

  80. Tang Y, Shen K, Lv Z, Xu X, Hou G, Cao H, Wu L, Zheng G, Deng Y. Three-dimensional ordered macroporous Cu current collector for lithium metal anode: uniform nucleation by seed crystal. J Power Sources. 2018;403:82. https://doi.org/10.1016/j.jpowsour.2018.09.083.

    Article  CAS  Google Scholar 

  81. Zhang R, Wang N, Shi C, Liu E, He C, Zhao N. Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode. Carbon. 2020;161:198. https://doi.org/10.1016/j.carbon.2020.01.077.

    Article  CAS  Google Scholar 

  82. Chen H, Pei A, Wan J, Lin D, Vilá R, Wang H, Mackanic D, Steinrück HG, Huang W, Li Y, Yang A, Xie J, Wu Y, Wang H, Cui Y. Tortuosity effects in lithium-metal host anodes. Joule. 2020;4:938. https://doi.org/10.1016/j.joule.2020.03.008.

    Article  CAS  Google Scholar 

  83. Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29:1700389. https://doi.org/10.1002/adma.201700389.

    Article  CAS  Google Scholar 

  84. Jin S, Sun Z, Guo Y, Qi Z, Guo C, Kong X, Zhu Y, Ji H. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes. Adv Mater. 2017;29:1700783. https://doi.org/10.1002/adma.201700783.

    Article  CAS  Google Scholar 

  85. Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Adv Mater. 2018;30:1802014. https://doi.org/10.1002/adma.201802014.

    Article  CAS  Google Scholar 

  86. Zhao H, Lei D, He YB, Yuan Y, Yun Q, Ni B, Lv W, Li B, Yang QH, Kang F, Lu J. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv Energy Mater. 2018;8:1800266. https://doi.org/10.1002/aenm.201800266.

    Article  CAS  Google Scholar 

  87. Xu Y, Menon AS, Harks PPRML, Hermes DC, Haverkate LA, Unnikrishnan S, Mulder FM. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018;12:69. https://doi.org/10.1016/j.ensm.2017.11.011.

    Article  Google Scholar 

  88. An Y, Fei H, Zeng G, Xu X, Ci L, Xi B, Xiong S, Feng J, Qian Y. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries. Nano Energy. 2018;47:503. https://doi.org/10.1016/j.nanoen.2018.03.036.

    Article  CAS  Google Scholar 

  89. Lu W, Wu C, Wei W, Ma J, Chen L, Chen Y. Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. J Mater Chem A. 2019;7:24262. https://doi.org/10.1039/C9TA09396F.

    Article  CAS  Google Scholar 

  90. Gong Z, Wang P, Ye K, Zhu K, Yan J, Wang G, Chen G, Cao D. MXene-modified conductive framework as a universal current collector for dendrite-free lithium and zinc metal anode. J Colloid Interf Sci. 2022;625:700. https://doi.org/10.1016/j.jcis.2022.05.157.

    Article  CAS  Google Scholar 

  91. Sun Z, Jin S, Jin H, Du Z, Zhu Y, Cao A, Ji H, Wan LJ. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv Mater. 2018;30:1800884. https://doi.org/10.1002/adma.201800884.

    Article  CAS  Google Scholar 

  92. Pan L, Luo Z, Zhang Y, Chen W, Zhao Z, Li Y, Wan J, Yu D, He H, Wang D. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS Appl Mater Inter. 2019;11:44383. https://doi.org/10.1021/acsami.9b17108.

    Article  CAS  Google Scholar 

  93. Qian J, Li Y, Zhang M, Luo R, Wang F, Ye Y, Xing Y, Li W, Qu W, Wang L, Li L, Li Y, Wu F, Chen R. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy. 2019;60:866. https://doi.org/10.1016/j.nanoen.2019.04.030.

    Article  CAS  Google Scholar 

  94. Zhang H, Eshetu GG, Judez X, Li C, Rodriguez-Martínez LM, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew Chem Int Edit. 2018;57:15002. https://doi.org/10.1002/anie.201712702.

    Article  CAS  Google Scholar 

  95. Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2:833. https://doi.org/10.1016/j.joule.2018.03.008.

    Article  CAS  Google Scholar 

  96. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27:1605989. https://doi.org/10.1002/adfm.201605989.

    Article  CAS  Google Scholar 

  97. Liu QC, Xu JJ, Yuan S, Chang ZW, Xu D, Yin YB, Li L, Zhong HX, Jiang YS, Yan JM, Zhang XB. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv Mater. 2015;27:5241. https://doi.org/10.1002/adma.201501490.

    Article  CAS  Google Scholar 

  98. Li T, Li Y, Sun Y, Qian Z, Wang R. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Mater Lett. 2021;3:838. https://doi.org/10.1021/acsmaterialslett.1c00276.

    Article  CAS  Google Scholar 

  99. Wu H, Cao Y, Geng L, Wang C. In situ formation of stable interfacial coating for high performance lithium metal anodes. Chem Mater. 2017;29:3572. https://doi.org/10.1021/acs.chemmater.6b05475.

    Article  CAS  Google Scholar 

  100. Kim S, Park SO, Lee MY, Lee JA, Kristanto I, Lee TK, Hwang D, Kim J, Wi TU, Lee HW, Kwak SK, Choi NS. Stable electrode-electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Mater. 2022;45:1. https://doi.org/10.1016/j.ensm.2021.10.031.

    Article  CAS  Google Scholar 

  101. Wang G, Xiong X, Xie D, Fu X, Ma X, Li Y, Liu Y, Lin Z, Yang C, Liu M. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 2019;23:701. https://doi.org/10.1016/j.ensm.2019.02.026.

    Article  Google Scholar 

  102. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42:9011. https://doi.org/10.1039/C3CS60177C.

    Article  CAS  Google Scholar 

  103. Zhao CZ, Cheng XB, Zhang R, Peng HJ, Huang JQ, Ran R, Huang ZH, Wei F, Zhang Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 2016;3:77. https://doi.org/10.1016/j.ensm.2016.01.007.

    Article  Google Scholar 

  104. Guo J, Wen Z, Wu M, Jin J, Liu Y. Vinylene carbonate-LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun. 2015;51:59. https://doi.org/10.1016/j.elecom.2014.12.008.

    Article  CAS  Google Scholar 

  105. Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater. 2021;11:2000648. https://doi.org/10.1002/aenm.202000648.

    Article  CAS  Google Scholar 

  106. Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Designing solid-state interfaces on lithium-metal anodes: a review. Sci China Chem. 2019;62:1286. https://doi.org/10.1007/s11426-019-9519-9.

    Article  CAS  Google Scholar 

  107. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2:16103. https://doi.org/10.1038/natrevmats.2016.103.

    Article  CAS  Google Scholar 

  108. Luo W, Zhou L, Fu K, Yang Z, Wan J, Manno M, Yao Y, Zhu H, Yang B, Hu L. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015;15:6149. https://doi.org/10.1021/acs.nanolett.5b02432.

    Article  CAS  Google Scholar 

  109. Li C, Liu S, Shi C, Liang G, Lu Z, Fu R, Wu D. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun. 2019;10:1363. https://doi.org/10.1038/s41467-019-09211-z.

    Article  CAS  Google Scholar 

  110. Leng L, Zeng X, Chen P, Shu T, Song H, Fu Z, Wang H, Liao S. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte. ElectrochimActa. 2015;176:1108. https://doi.org/10.1016/j.electacta.2015.07.111.

    Article  CAS  Google Scholar 

  111. Xiao J, Zhai P, Wei Y, Zhang X, Yang W, Cui S, Jin C, Liu W, Wang X, Jiang H, Luo Z, Zhang X, Gong Y. In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes. Nano Lett. 2020;20:3911. https://doi.org/10.1021/acs.nanolett.0c01085.

    Article  CAS  Google Scholar 

  112. Zhang XQ, Cheng XB, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces. 2018;5:1701097. https://doi.org/10.1002/admi.201701097.

    Article  CAS  Google Scholar 

  113. Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017;2:17012. https://doi.org/10.1038/nenergy.2017.12.

    Article  CAS  Google Scholar 

  114. Lu Q, He YB, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang QH. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater. 2017;29:1604460. https://doi.org/10.1002/adma.201604460.

    Article  CAS  Google Scholar 

  115. Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater. 2015;27:6457. https://doi.org/10.1021/acs.chemmater.5b02789.

    Article  CAS  Google Scholar 

  116. Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu PC, Bao Z, Cui Y. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective player. J Am Chem Soc. 2017;39:4815. https://doi.org/10.1021/jacs.6b13314.

    Article  CAS  Google Scholar 

  117. Liu F, Xiao Q, Wu HB, Shen L, Xu D, Cai M, Lu Y. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv Energy Mater. 2018;8:1701744. https://doi.org/10.1002/aenm.201701744.

    Article  CAS  Google Scholar 

  118. Zheng G, Wang C, Pei A, Lopez J, Shi F, Chen Z, Sendek AD, Lee HW, Lu Z, Schneider H, Safont-Sempere MM, Chu S, Bao Z, Cui Y. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016;1:1247. https://doi.org/10.1021/acsenergylett.6b00456.

    Article  CAS  Google Scholar 

  119. Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, Zhu J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017;29:1603755. https://doi.org/10.1002/adma.201603755.

    Article  CAS  Google Scholar 

  120. Li G, Huang Q, He X, Gao Y, Wang D, Kim SH, Wang D. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries. ACS Nano. 2018;12:1500. https://doi.org/10.1021/acsnano.7b08035.

    Article  CAS  Google Scholar 

  121. Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, Huang JQ, Zhang Q. Lithium metal anodes: dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv Mater. 2018;30:1870181. https://doi.org/10.1002/adma.201707629.

    Article  CAS  Google Scholar 

  122. Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, Cui Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017;29:1605531. https://doi.org/10.1002/adma.201605531.

    Article  CAS  Google Scholar 

  123. Xu C, Li B, Du H, Kang F. Energetic zinc iIon chemistry: the rechargeable zinc ion battery. Angew Chem, Int Ed. 2012;124:957. https://doi.org/10.1002/ange.201106307.

    Article  Google Scholar 

  124. Li Y, Fu J, Zhong C, Wu T, Chen Z, Hu W, Amine K, Lu J. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 2019;9:1802605. https://doi.org/10.1002/aenm.201802605.

    Article  CAS  Google Scholar 

  125. Yang Q, Li Q, Liu Z, Wang D, Guo Y, Li X, Tang Y, Li H, Dong B, Zhi C. Dendrites in Zn-based batteries. Adv Mater. 2020;32:2001854. https://doi.org/10.1002/adma.202001854.

    Article  CAS  Google Scholar 

  126. Hopkins BJ, Chervin CN, Parker JF, Long JW, Rolison DR. An areal-energy standard to validate air-breathing electrodes for rechargeable zinc-air batteries. Adv Energy Mater. 2020;10:2001287. https://doi.org/10.1002/aenm.202001287.

    Article  CAS  Google Scholar 

  127. Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33:2007406. https://doi.org/10.1002/adma.202007406.

    Article  CAS  Google Scholar 

  128. Yuan D, Zhao J, Ren H, Chen YQ, Chua R, Jie ETJ, Cai Y, Edison E, Manalastas W, Wong MW, Srinivasan M. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Edit. 2021;60:7213. https://doi.org/10.1002/ange.202015488.

    Article  CAS  Google Scholar 

  129. Zeng X, Hao Wang JZ, Mao J, Guo Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019;20:410. https://doi.org/10.1016/j.ensm.2019.04.022.

    Article  Google Scholar 

  130. Gong Z, Wang P, Liu J, Ye K, Zhu K, Yan J, Wang G, Cao D. Water-in-salt electrolyte enabled active carbon||Mg-OMS-1 capacitor-batteries with high voltage and wide operating temperature. J Energy Storage. 2022;47:103560. https://doi.org/10.1016/j.est.2021.103560.

    Article  Google Scholar 

  131. Wang Z, Huang J, Guo Z, Dong X, Liu Y, Wang Y, Xia Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule. 2019;3:1289. https://doi.org/10.1016/j.joule.2019.02.012.

    Article  CAS  Google Scholar 

  132. Wang LP, Li NW, Wang TS, Yin YX, Guo YG, Wang CR. Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim Acta. 2017;244:172. https://doi.org/10.1016/j.electacta.2017.05.072.

    Article  CAS  Google Scholar 

  133. Gong Z, Jiang K, Wang P, Liu X, Wang D, Ye K, Zhu K, Yan J, Wang G, Cao D. Stable and dendrite-free Zn anode with artificial desolvation interface layer toward high-performance Zn-ion capacitor. J Energy Chem. 2022;72:143. https://doi.org/10.1016/j.jechem.2022.05.017.

    Article  CAS  Google Scholar 

  134. Zheng J, Yin J, Zhang D, Li G, Bock DC, Tang T, Zhao Q, Liu X, Warren A, Deng Y, Jin S, Marschilok AC, Takeuchi ES, Takeuchi KJ, Rahn CD, Archer LA. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci Adv. 2020;6(25):eabb1122. https://doi.org/10.1126/sciadv.abb1122.

    Article  CAS  Google Scholar 

  135. Li C, Shi X, Liang S, Ma X, Han M, Wu X, Zhou J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem Eng J. 2020;379:122248. https://doi.org/10.1016/j.cej.2019.122248.

    Article  CAS  Google Scholar 

  136. Yin Y, Wang S, Zhang Q, Song Y, Chang N, Pan Y, Zhang H, Li X. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv Mater. 2020;32:1906803. https://doi.org/10.1002/adma.201906803.

    Article  CAS  Google Scholar 

  137. Xia A, Pu X, Tao Y, Liu H, Wang Y. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl Surf Sci. 2019;481:852. https://doi.org/10.1016/j.apsusc.2019.03.197.

    Article  CAS  Google Scholar 

  138. Zhao K, Wang C, Yu Y, Yan M, Wei Q, He P, Dong Y, Zhang Z, Wang X, Mai L. Ultrathin surface coating enables stabilized zinc metal anode. Adv Mater Interfaces. 2018;5:1800848. https://doi.org/10.1002/admi.201800848.

    Article  CAS  Google Scholar 

  139. Cui M, Xiao Y, Kang L, Du W, Gao Y, Sun X, Zhou Y, Li X, Li H, Jiang F, Zhi C. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater. 2019;2:6490. https://doi.org/10.1021/acsaem.9b01063.

    Article  CAS  Google Scholar 

  140. Zeng Y, Zhang X, Qin R, Liu X, Fang P, Zheng D, Tong Y, Lu X. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater. 2019;31(36):1903675. https://doi.org/10.1002/adma.201903675.

    Article  CAS  Google Scholar 

  141. Lee D, Kim HI, Kim WY, Cho SK, Baek K, Jeong K, Ahn DB, Park S, Kang SJ, Lee SY. Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv Funct Mater. 2021;31(36):2103850. https://doi.org/10.1002/adfm.202103850.

    Article  CAS  Google Scholar 

  142. Jiao Y, Li F, Jin X, Lei Q, Li L, Wang L, Ye T, He E, Wang J, Chen H, Lu J, Gao R, Li Q, Jiang C, Li J, He G, Liao M, Zhang H, Parkin IP, Peng H, Zhang Y. Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv Funct Mater. 2021;31(49):2107652. https://doi.org/10.1002/adfm.202107652.

    Article  CAS  Google Scholar 

  143. Ming J, Guo J, Xia C, Wang W, Alshareef HN. Zinc-ion batteries: materials, mechanisms, and applications. Mat Sci Eng. 2019;135:58. https://doi.org/10.1016/j.mser.2018.10.002.

    Article  Google Scholar 

  144. Jia H, Wang Z, Tawiah B, Wang Y, Chan CY, Fei B, Pan F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy. 2020;70:104523. https://doi.org/10.1016/j.nanoen.2020.104523.

    Article  CAS  Google Scholar 

  145. Lee BS, Cui S, Xing X, Liu H, Yue X, Petrova V, Lim HD, Chen R, Liu P. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl Mater Inter. 2018;10:38928. https://doi.org/10.1021/acsami.8b14022.

    Article  CAS  Google Scholar 

  146. Liang Y, Ma D, Zhao N, Wang Y, Yang M, Ruan J, Yang G, Mi H, He C, Zhang P. Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv Funct Mater. 2022;32(25):2112936. https://doi.org/10.1002/adfm.202112936.

    Article  CAS  Google Scholar 

  147. Luo Y, Yang Y, Tao Y, Huang D, Huang B, Chen H. Directing the preferred crystal orientation by a cellulose acetate/graphene oxide composite separator for dendrite-free Zn-metal anodes. ACS Appl Energ Mater. 2021;4(12):14599. https://doi.org/10.1021/acsaem.1c03223.

    Article  CAS  Google Scholar 

  148. Lu K, Song B, Zhang Y, Ma H, Zhan J. Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J Mater Chem A. 2017;5(45):23628. https://doi.org/10.1039/C7TA07834J.

    Article  CAS  Google Scholar 

  149. Chae MS, Heo JW, Lim SC, Hong ST. Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes. Inorg Chem. 2016;55(7):3294. https://doi.org/10.1021/acs.inorgchem.5b02362.

    Article  CAS  Google Scholar 

  150. Huang J, Chi X, Han Q, Liu Y, Du Y, Yang J, Liu Y. Thickening and homogenizing aqueous electrolyte towards highly efficient and stable Zn metal batteries. J Electrochem Soc. 2019;166:A1211. https://doi.org/10.1149/2.1031906jes.

    Article  CAS  Google Scholar 

  151. Xu W, Zhao K, Huo W, Wang Y, Yao G, Gu X, Cheng H, Mai L, Hu C, Wang X. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy. 2019;62:275. https://doi.org/10.1016/j.nanoen.2019.05.042.

    Article  CAS  Google Scholar 

  152. Hao J, Long J, Li B, Li X, Zhang S, Yang F, Zeng X, Yang Z, Pang WK, Guo Z. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater. 2019;29:1903605. https://doi.org/10.1002/adfm.201903605.

    Article  CAS  Google Scholar 

  153. Li Q, Ge W, Yang P, Zhang J, An M. Insight into the role and its mechanism of polyacrylamide as an additive in sulfate electrolytes for nanocrystalline zinc electrodeposition. J Electrochem Soc. 2016;163:D127. https://doi.org/10.1149/2.0531605jes.

    Article  CAS  Google Scholar 

  154. Guan C, Hu F, Yu X, Chen HL, Song GH, Zhu K. High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 2022;41(2):448. https://doi.org/10.1007/s12598-021-01778-1.

    Article  CAS  Google Scholar 

  155. Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136. https://doi.org/10.1038/358136a0.

    Article  CAS  Google Scholar 

  156. Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater. 2010;9:309. https://doi.org/10.1038/nmat2703.

    Article  CAS  Google Scholar 

  157. Han X, Ji Y, Yang Y. Ferroelectric photovoltaic materials and devices. Adv Funct Mater. 2022;32:2109625. https://doi.org/10.1002/adfm.202109625.

    Article  CAS  Google Scholar 

  158. Moheimani SOR, Fleming AJ. Piezoelectric Transducers for Vibration Control and Damping. Edited by Moheimani SOR, Fleming AJ. London: Springer. 2006.1. https://doi.org/10.1007/1-84628-332-9.

  159. Li JF. Lead-free Piezoelectric Materials. Edited by Li JF. Weinheim: Wiley. 2021.1. https://doi.org/10.1002/9783527817047.ch1.

  160. Nuraje N, Su K. Perovskite ferroelectric nanomaterials. Nanoscale. 2013;5:8752. https://doi.org/10.1039/C3NR02543H.

    Article  CAS  Google Scholar 

  161. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Edited by Lines ME, Glass AM. Oxford: Oxford university press. 2001.1.

  162. Kim TY, Kim SK, Kim SW. Application of ferroelectric materials for improving output power of energy harvesters. Nano Converg. 2018;5:30. https://doi.org/10.1186/s40580-018-0163-0.

    Article  CAS  Google Scholar 

  163. Moniruddin M, Ilyassov B, Zhao X, Smith E, Serikov T, Ibrayev N, Asmatulu R, Nuraje N. Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater Today Energy. 2018;7:246. https://doi.org/10.1016/j.mtener.2017.10.005.

    Article  Google Scholar 

  164. Wu T, Pisula W, Rashid MYA, Gao P. Application of perovskite-structured materials in field-effect transistors. Adv Electron Mater. 2019;5:1900444. https://doi.org/10.1002/aelm.201900444.

    Article  CAS  Google Scholar 

  165. Rørvik PM, Grande T, Einarsrud MA. One-dimensional nanostructures of ferroelectric perovskites. Adv Mater. 2011;23:4007. https://doi.org/10.1002/adma.201004676.

    Article  CAS  Google Scholar 

  166. Ning W, Gao F. Structural and functional diversity in lead-free halide perovskite materials. Adv Mater. 2019;31:1900326. https://doi.org/10.1002/adma.201900326.

    Article  CAS  Google Scholar 

  167. Ye HY, Tang YY, Li PF, Liao WQ, Gao JX, Hua XN, Cai H, Shi PP, You YM, Xiong RG. Metal-free three-dimensional perovskite ferroelectrics. Science. 2018;361:151. https://doi.org/10.1126/science.aas9330.

    Article  CAS  Google Scholar 

  168. Ye HY, Zhou Q, Niu X, Liao WQ, Fu DW, Zhang Y, You YM, Wang J, Chen ZN, Xiong RG. High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-pyrrolinium)MnCl3. J Am Chem Soc. 2015;137:13148. https://doi.org/10.1021/jacs.5b08290.

    Article  CAS  Google Scholar 

  169. Kawai H, Kunimori K, Kondow T, Onishi T, Tamaru K. The piezoelectricity of poly (vinylidene fluoride). Jap J Appl Phys. 1969. https://doi.org/10.1143/JJAP.8.975.

    Article  Google Scholar 

  170. Li H, Wang R, Han ST, Zhou Y. Ferroelectric polymers for non-volatile memory devices: a review. Polym Int. 2020;69:533. https://doi.org/10.1002/pi.5980.

    Article  CAS  Google Scholar 

  171. Mai M, Ke S, Lin P, Zeng X. Ferroelectric polymer thin films for organic electronics. J Nanomater. 2015;1:181. https://doi.org/10.1155/2015/812538.

    Article  CAS  Google Scholar 

  172. Li T, Zeng K. Probing of local multifield coupling phenomena of advanced materials by scanning probe microscopy techniques. Adv Mater. 2018;30:1803064. https://doi.org/10.1002/adma.201803064.

    Article  CAS  Google Scholar 

  173. Gruverman A, Alexe M, Meier D. Piezoresponse force microscopy and nanoferroic phenomena. Nat Commun. 2019;10:1661. https://doi.org/10.1038/s41467-019-09650-8.

    Article  CAS  Google Scholar 

  174. Kalinin SV, Gruverman A. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Edited by Kalinin SV, Gruverman. New York: Springer 2007.1. https://doi.org/10.1007/978-0-387-28668-6.

  175. Dahiya RS, Valle M. Robotic Tactile Sensing: Technologies and System. Edited by Dahiya RS, Valle M. Dordrecht: Springer. 2013.1. https://doi.org/10.1007/978-94-007-0579-1.

  176. Li J, Liu Y, Zhang Y, Cai HL, Xiong RG. Molecular ferroelectrics: where electronics meet biology. Phys Chem Chem Phys. 2013;15:20786. https://doi.org/10.1039/C3CP52501E.

    Article  CAS  Google Scholar 

  177. Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N. Self-heating-induced healing of lithium dendrites. Science. 2018;359:1513. https://doi.org/10.1126/science.aap8787.

    Article  CAS  Google Scholar 

  178. Sand HJ. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Proc Phys Soc London. 1899;17:496. https://doi.org/10.1088/1478-7814/17/1/332.

    Article  Google Scholar 

  179. Chazalviel JN. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990;42:7355. https://doi.org/10.1103/PhysRevA.42.7355.

    Article  CAS  Google Scholar 

  180. Fleury V, Chazalviel JN, Rosso M, Sapoval B. The role of the anions in the growth speed of fractal electrodeposits. J Electroanal Chem Interfacial Electrochem. 1990;290:249. https://doi.org/10.1016/0022-0728(90)87434-L.

    Article  CAS  Google Scholar 

  181. Brissot C, Rosso M, Chazalviel JN, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources. 1999;81:925. https://doi.org/10.1016/S0378-7753(98)00242-0.

    Article  Google Scholar 

  182. Bai P, Guo J, Wang M, Kushima A, Su L, Li J, Brushett FR, Bazant MZ. Interactions between lithium growths and nanoporous ceramic separators. Joule. 2018;2:2434. https://doi.org/10.1016/j.joule.2018.08.018.

    Article  CAS  Google Scholar 

  183. Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9:3221. https://doi.org/10.1039/C6EE01674J.

    Article  CAS  Google Scholar 

  184. Hwang C, Song WJ, Song G, Wu Y, Lee S, Son HB, Kim J, Liu N, Park S, Song HK. A three-dimensional nano-web scaffold of ferroelectric beta-pvdf fibers for lithium metal plating and stripping. ACS Appl Mater Inter. 2020;12:29235. https://doi.org/10.1021/acsami.0c05065.

    Article  CAS  Google Scholar 

  185. Guo Y, Wang R, Cui C, Xiong R, Wei Y, Zhai T, Li H. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect. Nano Lett. 2020;20:7680. https://doi.org/10.1021/acs.nanolett.0c03206.

    Article  CAS  Google Scholar 

  186. Xia S, Zhao Y, Yan J, Yu J, Ding B. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano. 2021;15:3161. https://doi.org/10.1021/acsnano.0c09745.

    Article  CAS  Google Scholar 

  187. Li Z, Yu R, Gui S, Yang H, Guo X. A pressure responsive artificial interphase layer of BaTiO3 against dendrite growth for stable lithium metal anodes. Batter Supercaps. 2022;5:e202200142. https://doi.org/10.1002/batt.202200142.

    Article  CAS  Google Scholar 

  188. Du P, Li B, Mao Z, Nan Y, Guo D, Wu S. Regulating lithium-ion flow by piezoelectric effect of the poled-BaTiO3 film for dendrite-free lithium metal anode. J Electroanal Chem. 2022;919:116538. https://doi.org/10.1016/j.jelechem.2022.116538.

    Article  CAS  Google Scholar 

  189. Zou P, Zhang R, Yao L, Qin J, Kisslinger K, Zhuang H, Xin HL. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration. Adv Energy Mater. 2021;11:2100982. https://doi.org/10.1002/aenm.202100982.

    Article  CAS  Google Scholar 

  190. Bissannagari M, Shaik MR, Cho KY, Kim J, Yoon S. Designing a bimodal BaTiO3 artificial layer to boost the dielectric effect toward highly reversible dendrite-free Zn metal anodes. ACS Appl Mater Inter. 2022;14:35613. https://doi.org/10.1021/acsami.2c07551.

    Article  CAS  Google Scholar 

  191. Chen T, Huang F, Wang Y, Yang Y, Tian H, Xue JM. Unveiling the synergistic effect of ferroelectric polarization and domain configuration for reversible zinc metal anodes. Adv Sci. 2022;9:2105980. https://doi.org/10.1002/advs.202105980.

    Article  CAS  Google Scholar 

  192. Luo J, Fang CC, Wu NL. High polarity poly (vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv Energy Mater. 2018;8:1701482. https://doi.org/10.1002/aenm.201701482.

    Article  CAS  Google Scholar 

  193. Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28:1705838. https://doi.org/10.1002/adfm.201705838.

    Article  CAS  Google Scholar 

  194. Liu XR, Deng X, Liu RR, Yan HJ, Guo YG, Wang D, Wan LJ. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. ACS Appl Mater Inter. 2014;6:20317. https://doi.org/10.1021/am505847s.

    Article  CAS  Google Scholar 

  195. Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett. 2012;12:2153. https://doi.org/10.1021/nl300570d.

    Article  CAS  Google Scholar 

  196. Xiang J, Cheng Z, Zhao Y, Zhang B, Yuan L, Shen Y, Guo Z, Zhang Y, Jiang J, Huang Y. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode. Adv Sci. 2019;6:1901120. https://doi.org/10.1002/advs.201901120.

    Article  CAS  Google Scholar 

  197. Gao T, Rainey C, Lu W. Piezoelectric mechanism and a compliant film to effectively suppress dendrite growth. ACS Appl Mater Inter. 2020;12:51448. https://doi.org/10.1021/acsami.0c14553.

    Article  CAS  Google Scholar 

  198. Wang Y, Guo T, Yin J, Tian Z, Ma Y, Liu Z, Zhu Y, Alshareef HN. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv Mater. 2022;34:2106937. https://doi.org/10.1002/adma.202106937.

    Article  CAS  Google Scholar 

  199. Xue L, Chen W, Hu Y, Lei T, Yang C, Zhou M, Zhang X, Hu A, Li Y, Wang X, Xiong J. Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy. 2021;79:105481. https://doi.org/10.1016/j.nanoen.2020.105481.

    Article  CAS  Google Scholar 

  200. Liang Y, Ma D, Zhao N, Wang Y, Yang M, Ruan J, Yang G, Mi H, He C, Zhang P. Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv Funct Mate. 2022. https://doi.org/10.1002/adfm.202112936.

    Article  Google Scholar 

  201. Liu S, Zhao Y, Li X, Yu J, Yan J, Ding B. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv Mater. 2021;33:2008084. https://doi.org/10.1002/adma.202008084.

    Article  CAS  Google Scholar 

  202. Wu K, Yi J, Liu X, Sun Y, Cui J, Xie Y, Liu Y, Xia Y, Zhang J. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-micro Lett. 2021;13:1. https://doi.org/10.1007/s40820-021-00599-2.

    Article  CAS  Google Scholar 

  203. Sun Z, Zhao Y, Ni Q, Liu Y, Sun C, Li J, Jin H. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface. Small. 2022;18:2200716. https://doi.org/10.1002/smll.202200716.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21571132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Fei Wang, Chuan-Gang Yao, Ke-Di Cai or Fa-Nian Shi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HX., Wang, PF., Yao, CG. et al. Recent advances of ferro-/piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. 42, 2516–2544 (2023). https://doi.org/10.1007/s12598-023-02319-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02319-8

Keywords

Navigation