Skip to main content

Advertisement

Log in

Coupling interface constructions of FeOOH/NiCo2S4 by microwave-assisted method for efficient oxygen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) with slow kinetics is the rate-limiting step of electrochemical water splitting. A reasonable construction of interface nanostructures is the key to improving the OER efficiency and durability of non-noble metal electrocatalysts. In this study, a FeOOH/NiCo2S4 core–shell nanorod array with abundant heterogeneous interfaces and high density of active sites was successfully prepared by a microwave-assisted method. Experimental research and theoretical calculations show that the abundant strong coupling Ni/Co–S–Fe interface helps in adjusting the electronic structure of the material surface, optimizing the adsorption energy of the intermediate, and realizing an efficient catalytic process. The as-synthesized FeOOH/NiCo2S4/NF composite electrode exhibited lower overpotential (198 mV) and Tafel slope (62 mV·dec−1) at a current density of 10 mA·cm−2 and excellent stability (approximately 100% retention after 100 h) than the NiCo2S4/nickel foam (NF). In conclusion, constructing heterojunctions with complementary active materials is an effective strategy to design efficient and robust OER electrocatalysts.

Graphical abstract

摘要

动力学缓慢的析氧反应(OER)是电化学分解水的限速步骤。合理构建纳米界面结构是提高非贵金属电催化剂析氧 反应效率和耐久性的关键。本研究采用微波辅助法制备了具有丰富异构界面和高密度活性位点的 FeOOH/NiCo2S4 核壳纳米棒阵列。实验研究和理论计算表明,丰富的强耦合Ni/Co-S-Fe 界面有助于调节材料表 面的电子结构,优化中间体的吸附能,实现高效的催化过程。与 NiCo2S4/NF相比,合成 FeOOH/NiCo2S4/NF复合电极在电流密度为10 mA·cm−2 时表现出较低的过电位(198 mV)和塔菲尔斜率(62 mV·dec−1), 且具有良好的 稳定性(100 h 后活性保持率接近100%)。研究表明,利用具有互补优势的活性材料构建异质界面是设计高效、稳 定的OER 电催化剂的有效策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen ZJ, Duan XG, Wei W, Wang SB, Ni BJ. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A. 2019;7(25):14971. https://doi.org/10.1039/C9TA03220G.

    Article  CAS  Google Scholar 

  2. Neef HJ. International overview of hydrogen and fuel cell research. Energy. 2009;34(3):327. https://doi.org/10.1016/j.energy.2008.08.014.

    Article  CAS  Google Scholar 

  3. Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148. https://doi.org/10.1039/C4CS00448E.

    Article  CAS  Google Scholar 

  4. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed. 2015;54(1):52. https://doi.org/10.1002/anie.201407031.

    Article  CAS  Google Scholar 

  5. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337. https://doi.org/10.1039/C6CS00328A.

    Article  CAS  Google Scholar 

  6. Lee Y, Suntivich J, May KJ, Perry EE, Shao Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett. 2012;3(3):399. https://doi.org/10.1021/jz2016507.

    Article  CAS  Google Scholar 

  7. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF. A highly active and stable IrOx/SrIr3 catalyst for the oxygen evolution reaction. Science. 2016;353(6303):1011. https://doi.org/10.1126/science.aaf5050.

    Article  CAS  Google Scholar 

  8. Zhang JY, Bai XW, Wang TT, Xiao W, Xi PX, Wang JL, Gao DQ, Wang J. Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 2019;11(1):2. https://doi.org/10.1007/s40820-018-0232-2.

    Article  CAS  Google Scholar 

  9. Wang D, Chang YX, Li YR, Zhang SL, Xu SL. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021;40(11):3156. https://doi.org/10.1007/s12598-021-01733-0.

    Article  CAS  Google Scholar 

  10. Zhang JT, Zhao ZH, Xia ZH, Dai LM. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol. 2015;10(5):444. https://doi.org/10.1038/nnano.2015.48.

    Article  CAS  Google Scholar 

  11. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc. 2015;137(3):1305. https://doi.org/10.1021/ja511559d.

    Article  CAS  Google Scholar 

  12. Tang C, Wang HS, Wang HF, Zhang Q, Tian GL, Nie JQ, Wei F. Catalysis: spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv Mater. 2015;27(30):4524. https://doi.org/10.1002/adma.201570205.

    Article  Google Scholar 

  13. Wang YM, Qian GF, Xu QL, Zhang H, Shen F, Luo L, Yin SB. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl Catal B Environ. 2021. https://doi.org/10.1016/j.apcatb.2021.119881.

    Article  Google Scholar 

  14. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373. https://doi.org/10.1007/s12598-020-01541-y.

    Article  CAS  Google Scholar 

  15. Sun XZ, Liu XJ, Xing XR, Li F. Electrodeposited with FeOOH and MnO2 on laser-induced graphene for multi-assembly supercapacitors. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2021.162230.

    Article  Google Scholar 

  16. Liu YP, Li QJ, Si R, Li GD, Li W, Liu DP, Wang DJ, Sun L, Zhang Y, Zou XX. Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv Mater. 2017;29(13):1606200. https://doi.org/10.1002/adma.201606200.

    Article  CAS  Google Scholar 

  17. Guo CX, Zheng Y, Ran JR, Xie FX, Jaroniec M, Qiao SZ. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew Chem Int Ed. 2017;56(29):8539. https://doi.org/10.1002/anie.201701531.

    Article  CAS  Google Scholar 

  18. Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc. 2015;137(10):3638. https://doi.org/10.1021/jacs.5b00281.

    Article  CAS  Google Scholar 

  19. Görlin M, Chernev P, Ferreira de Araújo J, Reier T, Dresp S, Paul B, Krähnert R, Dau H, Strasser P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J Am Chem Soc. 2016;138(17):5603. https://doi.org/10.1021/jacs.6b00332.

    Article  CAS  Google Scholar 

  20. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc. 2014;136(7):2843. https://doi.org/10.1021/ja411835a.

    Article  CAS  Google Scholar 

  21. Feng JX, Chen MP, Zhou PF, Liu D, Chen YY, He BC, Bai HY, Liu D, Ip WF, Chen S, Liu DT, Feng WL, Ni J, Pan H. Reconstruction optimization of distorted FeOOH/Ni hydroxide for enhanced oxygen evolution reaction. Mater Today Energy. 2022. https://doi.org/10.1016/j.mtener.2022.101005.

    Article  Google Scholar 

  22. Li CF, Xie LJ, Zhao JW, Gu LF, Tang HB, Zheng LR, Li GR. Interfacial Fe-O-Ni-O-Fe bonding regulates the active Ni sites of Ni-MOFs via iron doping and decorating with FeOOH for super-efficient oxygen evolution. Angew Chem Int Ed. 2022;61(17):202116934. https://doi.org/10.1002/anie.202116934.

    Article  CAS  Google Scholar 

  23. Qiao C, Zhang Y, Zhu YQ, Cao CB, Bao XH, Xu JQ. One-step synthesis of zinc–cobalt layered double hydroxide (Zn-Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J Mater Chem A. 2015;3(13):6878. https://doi.org/10.1039/C4TA06634K.

    Article  CAS  Google Scholar 

  24. Huang HW, Zhou S, Yu C, Huang HL, Zhao JJ, Dai LM, Qiu JS. Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ Sci. 2020;13(2):545. https://doi.org/10.1039/C9EE03273H.

    Article  CAS  Google Scholar 

  25. Ma X, Zhang XY, Yang M, Xie JY, Lv RQ, Chai YM, Dong B. High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction. Rare Met. 2021;40(5):1048. https://doi.org/10.1007/s12598-020-01704-x.

    Article  CAS  Google Scholar 

  26. Guo ML, Gao HX, Huang W, Wang JQ, Liu Z, Zhan CH, Ding L, Tu JC. Microwave-assisted rapid synthesis of NiCo2S4 nanotube arrays on Ni foam for high-cycling-stability supercapacitors. J Alloys Compd. 2019. https://doi.org/10.1016/j.jallcom.2018.11.340.

    Article  Google Scholar 

  27. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133.

    Article  Google Scholar 

  28. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  29. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  Google Scholar 

  30. Perdew JP, Wang Y. Accurate, simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244. https://doi.org/10.1103/PhysRevB.45.13244.

    Article  Google Scholar 

  31. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558. https://doi.org/10.1103/PhysRevB.47.558.

    Article  Google Scholar 

  32. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  Google Scholar 

  33. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  Google Scholar 

  35. Xiao YH, Liu SJ, Li F, Zhang AQ, Zhao JH, Fang SM, Jia DZ. 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Func Mater. 2012;22(19):4052. https://doi.org/10.1002/adfm.201200519.

    Article  CAS  Google Scholar 

  36. Sivanantham A, Ganesan P, Shanmugam S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Func Mater. 2016;26(26):4661. https://doi.org/10.1002/adfm.201600566.

    Article  CAS  Google Scholar 

  37. Zhang BB, Wang L, Zhang YJ, Ding Y, Bi YP. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed. 2018;57(8):2248. https://doi.org/10.1002/anie.201712499.

    Article  CAS  Google Scholar 

  38. Yang Y, Lin ZY, Gao SQ, Su JW, Lun ZY, Xia GL, Chen JT, Zhang RR, Chen QW. Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal. 2017;7(1):469. https://doi.org/10.1021/acscatal.6b02573.

    Article  CAS  Google Scholar 

  39. Xing XR, Qu ZJ, Ge L, Sun XZ, Li F. Controllable synthesis of NiCo layered double hydroxide sheets on laser-induced graphene as electrodes for high-performance supercapacitors. CrystEngComm. 2022;24(29):5251. https://doi.org/10.1039/D2CE00466F.

    Article  CAS  Google Scholar 

  40. Hu J, Li SW, Chu JY, Niu SQ, Wang J, Du YC, Li ZH, Han XJ, Xu P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 2019;9(12):10705. https://doi.org/10.1021/acscatal.9b03876.

    Article  CAS  Google Scholar 

  41. Luo WJ, Jiang CR, Li YM, Shevlin SA, Han XY, Qiu KP, Cheng YC, Guo ZX, Huang W, Tang JW. Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. J Mater Chem A. 2017;5(5):2021. https://doi.org/10.1039/C6TA08719A.

    Article  CAS  Google Scholar 

  42. Feng XT, Jiao QZ, Chen WX, Dang YL, Dai Z, Suib SL, Zhang JT, Zhao Y, Li HS, Feng CH. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl Catal B. 2021;286:119869. https://doi.org/10.1016/j.apcatb.2020.119869.

    Article  CAS  Google Scholar 

  43. Gao MR, Sheng WC, Zhuang ZB, Fang QR, Gu S, Jiang J, Yan YS. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc. 2014;136(19):7077. https://doi.org/10.1021/ja502128j.

    Article  CAS  Google Scholar 

  44. Bao J, Zhang XD, Fan B, Zhang JJ, Zhou M, Yang WL, Hu X, Wang H, Pan BC, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed. 2015;54(25):7399. https://doi.org/10.1002/anie.201502226.

    Article  CAS  Google Scholar 

  45. Sun HM, Yan ZH, Liu FM, Xu WC, Cheng FY, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32(3):1806326. https://doi.org/10.1002/adma.201806326.

    Article  CAS  Google Scholar 

  46. Liu SH, Ji YJ, Yang SZ, Li LG, Shao Q, Hu ZW, Pao CW, Chen JL, Chan TS, Zhu T, Li YY, Huang XQ, Lu JM. Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catal. 2021;1(5):1104. https://doi.org/10.1016/j.checat.2021.08.016.

    Article  CAS  Google Scholar 

  47. Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim BJ, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers KE, Schmidt TJ. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater. 2017;16(9):925. https://doi.org/10.1038/nmat4938.

    Article  CAS  Google Scholar 

  48. Xu SJ, Hu JH, Huang LH, Liu Y, Zheng XY, Jiang DL. Anchoring RuSe2 on CoSe2 nanoarrays as a hybrid catalyst for efficient and robust oxygen evolution reaction. J Colloid Interface Sci. 2022. https://doi.org/10.1016/j.jcis.2022.01.111.

    Article  Google Scholar 

  49. Wu KY, Chu F, Meng YY, Edalati K, Gao QS, Li W, Lin HJ. Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. J Mater Chem A. 2021;9(20):12152. https://doi.org/10.1039/D1TA00769F.

    Article  CAS  Google Scholar 

  50. Rao RR, Corby S, Bucci A, García-Tecedor M, Mesa CA, Rossmeisl J, Giménez S, Lloret-Fillol J, Stephens IEL, Durrant JR. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J Am Chem Soc. 2022;144(17):7622. https://doi.org/10.1021/jacs.1c08152.

    Article  CAS  Google Scholar 

  51. Feng XT, Jiao QZ, Dai Z, Dang YL, Suib SL, Zhang JT, Zhao Y, Li HS, Feng CH, Li AR. Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution. J Mater Chem A. 2021;9(20):12244. https://doi.org/10.1039/D1TA02318G.

    Article  CAS  Google Scholar 

  52. Niu SQ, Sun YC, Sun GJ, Rakov D, Li YZ, Ma Y, Chu JY, Xu P. Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl Energy Mater. 2019;2(5):3927. https://doi.org/10.1021/acsaem.9b00785.

    Article  CAS  Google Scholar 

  53. Zhao J, Li QQ, Zhang QC, Liu R. Carbon tube-graphene heterostructure with different N-doping configurations induces an electrochemically active-active interface for efficient oxygen electrocatalysis. Chem Eng J. 2022;431:133730. https://doi.org/10.1016/j.cej.2021.133730.

    Article  CAS  Google Scholar 

  54. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu SH, Zhuang XD, Feng XL. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6702. https://doi.org/10.1002/anie.201602237.

    Article  CAS  Google Scholar 

  55. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):4998. https://doi.org/10.1126/science.aad4998.

    Article  Google Scholar 

  56. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308. https://doi.org/10.1021/ja0504690.

    Article  CAS  Google Scholar 

  57. Xue Z, Zhang XY, Qin JQ, Liu RP. Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. J Mater Chem A. 2019;7(40):23091. https://doi.org/10.1039/C9TA06686A.

    Article  CAS  Google Scholar 

  58. Zhou W, Huang DD, Wu YP, Zhao J, Wu T, Zhang J, Li DS, Sun CH, Feng PY, Bu XH. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed. 2019;58(13):4227. https://doi.org/10.1002/anie.201813634.

    Article  CAS  Google Scholar 

  59. Peng SJ, Gong F, Li LL, Yu DS, Ji DX, Zhang TR, Hu Z, Zhang ZQ, Chou SL, Du YH, Ramakrishna S. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J Am Chem Soc. 2018;140(42):13644. https://doi.org/10.1021/jacs.8b05134.

    Article  CAS  Google Scholar 

  60. Zhang RR, Zhang YC, Pan L, Shen GQ, Mahmood N, Ma YH, Shi Y, Jia WY, Wang L. Zhang Xw, Xu W, Zou JJ. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 2018;8(5):3803. https://doi.org/10.1021/acscatal.8b01046.

    Article  CAS  Google Scholar 

  61. Dionigi FB, Zeng ZH, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan DX, Bergmann A, Drnec J, Araujo JFD, Gliech M, Teschner D, Zhu J, Li WX, Greeley J, Cuenya BR, Strasser P. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun. 2020;11(1):2522. https://doi.org/10.1038/s41467-020-16237-1.

    Article  CAS  Google Scholar 

  62. Bergmann A, Jones TE, Martinez Moreno E, Teschner D, Chernev P, Gliech M, Reier T, Dau H, Strasser P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat Catal. 2018;1(9):711. https://doi.org/10.1038/s41929-018-0141-2.

    Article  CAS  Google Scholar 

  63. Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li YF, Li SL, Su JX, Lan YQ. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed. 2018;57(31):9660. https://doi.org/10.1002/anie.201803587.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Hainan Province Clinical Medical Center, the National Natural Science Foundation of China (Nos. 81860373, 51862006, 81902154 and 82060386) and Hainan Province Science and Technology Special Fund (Nos. ZDKJ2021029 and ZDYF2021SHFZ068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-Rong Wang or Jin-Chun Tu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8620 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, ML., Wu, ZY., Zhang, MM. et al. Coupling interface constructions of FeOOH/NiCo2S4 by microwave-assisted method for efficient oxygen evolution reaction. Rare Met. 42, 1847–1857 (2023). https://doi.org/10.1007/s12598-022-02239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02239-z

Keywords

Navigation