Skip to main content

Advertisement

Log in

Spatially strain-induced and selective preparation of MoxN (x = 1, 2) as a highly effective nanoarchitectonic catalyst for hydrogen evolution reaction in a wide pH range

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Developing highly efficient catalysts for the hydrogen evolution reaction (HER) is crucial to commercial water splitting in the global efforts to mitigate fossil fuel combustion and combat global climate change. Molybdenum nitrides (MoxN) such as γ-Mo2N and δ-MoN are promising HER catalysts. Although δ-MoN has better HER characteristics, controllable preparation of the materials is still challenging. Herein, selective preparation of γ-Mo2N and δ-MoN is demonstrated by controlling the spatial stress. The hybrid δ-MoN and N-doped carbon composite (MoN/NC) consists of MoN layers and 1-nm-thick carbon layers. The carbon layers polarized by the high valence state of Mo in MoN provide the adsorption sites for H+, and the NC layers also facilitate electron transport during the catalytic process. As a result, MoN/NC exhibits remarkable HER activity such as low overpotentials of 93, 211 and 141 mV to attain a current density of 10 mA·cm−2 as well as small Tafel slopes of 44.5, 83.2 and 65.4 mV·dec−1 in acidic, neutral and basic electrolytes of 0.5 mol·L−1 H2SO4, 1 mol·L−1 PBS, and 1 mol·L−1 KOH, respectively. The spatial stress effects enable selective preparation of specific phases in catalysts, and the pertinent mechanism provides important guidance to the preparation and optimization of advanced catalysts.

Graphical Abstract

摘要

发展高性能电解水析氢催化剂是十分重要的, 它可以缓解人们对石油等化石能源的依赖和减轻气候变暖等问题。在氮化钼一类材料(MoxN)中, MoN和Mo2N是十分重要的析氢催化剂。 尽管MoN具有更好催化活性, 但是它的可控制备依旧是一个挑战。本文中, 我们首次提出了通过压应力作用来选择性制备MoN和Mo2N。 通常直接退火处理MoO3, 只能得到Mo2N。若先将十二胺分子DDA插入MoO3原子层间, 再经过后续退火处理, 利用材料间的压应力, 便可以直接得到MoN相, 而不是Mo2N相。 同时层间的DDA直接转变成为N参杂的C层, 具有良好的导电性和化学稳定性。 因此, MoN/NC表现出来非常好的析氢性能, 如分别在酸性, 中性和碱性溶液中, 在较低的过电势93, 211 和141 mV达到10 mA·cm−2的电流密度。 这种应用空间应力的方式可以直接选择性制备想要得到的产物, 可以为其他催化剂的制备和合成提供有效的帮助。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529. https://doi.org/10.1039/C5CS00434A.

    Article  CAS  Google Scholar 

  2. Huang C, Wu D, Qin P, Ding K, Pi C, Ruan Q, Song H, Gao B, Chen H, Chu PK. Ultrafine Co nanodots embedded in N-doped carbon nanotubes grafted on hexagonal VN for highly efficient overall water splitting. Nano Energy. 2020;73:104788. https://doi.org/10.1016/j.nanoen.2020.104788.

    Article  CAS  Google Scholar 

  3. Huang C, Miao X, Pi C, Gao B, Zhang X, Qin P, Huo K, Peng X, Chu PK. Mo2C/VC heterojunction embedded in graphitic carbon network: an advanced electrocatalyst for hydrogen evolution. Nano Energy. 2019;60:520. https://doi.org/10.1016/j.nanoen.2019.03.088.

    Article  CAS  Google Scholar 

  4. Huang C, Qin P, Luo Y, Ruan QD, Liu LL, Wu YZ, Li QW, Xu Y, Liu RG, Chu PK. Recent progress and perspective of cobalt-based catalysts for water splitting: design and nanoarchitectonics. Materials Today Energy. 2022;23:100911. https://doi.org/10.1016/j.mtener.2021.100911.

    Article  CAS  Google Scholar 

  5. Xie JF, Li S, Zhang XD, Zhang JJ, Wang RX, Zhang H, Pan BC, Xie Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci. 2014;5(12):4615. https://doi.org/10.1039/C4SC02019G.

    Article  CAS  Google Scholar 

  6. Sun JW, Xu WJ, Lv CX, Zhang LJ, Shakouri MS, Peng YH, Wang QQ, Yang XF, Yuan D, Huang MH, Hu YF, Yang DJ, Zhang LX. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl Catal B-Environ. 2021;286:119882. https://doi.org/10.1016/j.apcatb.2021.119882.

    Article  CAS  Google Scholar 

  7. Ma GQ, Wang Z, Gao B, Ding TP, Zhong QZ, Peng X, Su J, Hu B, Yuan LY, Chu PK, Zhou J, Huo KF. Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. J Mater Chem A. 2015;3(28):14617. https://doi.org/10.1039/C5TA02851E.

    Article  CAS  Google Scholar 

  8. Song XY, Yi WC, Li JF, Kong QH, Bai H, Xi GC. Selective preparation of Mo2N and MoN with high surface area for flexible SERS sensing. Nano Lett. 2021;21(10):4410. https://doi.org/10.1021/acs.nanolett.1c01099.

    Article  CAS  Google Scholar 

  9. Lang X, Qadeer MA, Shen G, Zhang R, Yang S, An J, Pan L, Zou JJ. A Co–Mo2N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media. J Mater Chem A. 2019;7(36):20579. https://doi.org/10.1039/C9TA07749A.

    Article  CAS  Google Scholar 

  10. Xiong J, Cai WW, Shi WJ, Zhang XL, Li J, Yang ZH, Feng LG, Cheng HS. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J Mater Chem A. 2017;5(46):24193. https://doi.org/10.1039/C7TA07566A.

    Article  CAS  Google Scholar 

  11. Liao ZH, Li QW, Zhang JB, Xu J, Gao BA, Chu PK, Huo KF. Oriented MoS2 nanoflakes on N-doped carbon nanosheets derived from dodecylamine-intercalated MoO3 for high-performance lithium-ion battery anodes. Chem Electro Chem. 2018;5(10):1350. https://doi.org/10.1002/celc.201800092.

    Article  CAS  Google Scholar 

  12. Huang C, Pi C, Zhang X, Ding K, Qin P, Fu J, Peng X, Gao B, Chu PK, Huo K. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3–amine hybrid for high-efficient hydrogen evolution reaction. Small. 2018;14(25):1800667. https://doi.org/10.1002/smll.201800667.

    Article  CAS  Google Scholar 

  13. Qin P, Zhang S-Q, Huang Z-F, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447. https://doi.org/10.1007/s12598-021-01722-3.

    Article  CAS  Google Scholar 

  14. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  15. Ji HM, Liu XL, Liu ZJ, Yan B, Chen L, Xie YF, Liu C, Hou WH, Yang G. In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Func Mater. 2015;25(12):1886. https://doi.org/10.1002/adfm.201404378.

    Article  CAS  Google Scholar 

  16. Sen SK, Dutta S, Khan MR, Manir MS, Dutta S, Al MA, Razia S, Hakim MA. Characterization and antibacterial activity study of hydrothermally synthesized h-MoO3 nanorods and alpha-MoO3 nanoplates. Bionanoscience. 2019;9(4):87382. https://doi.org/10.1007/s12668-019-00671-7.

    Article  Google Scholar 

  17. Kang WJ, Feng Y, Li Z, Yang WQ, Cheng CQ, Shi ZZ, Yin PF, Shen GR, Yang J, Dong CK, Liu H, Ye FX, Du XW. Strain-activated copper catalyst for pH-universal hydrogen evolution reaction. Adv Func Mater. 2022;32(18):2112367. https://doi.org/10.1002/adfm.202112367.

    Article  CAS  Google Scholar 

  18. Sun JH, Guo FF, Li XY, Yang J, Ma JF. Constructing Ni/MoN heterostructure nanorod arrays anchored on Ni foam for efficient hydrogen evolution reaction under alkaline conditions. Sustain Energy Fuels. 2021;5(21):5565. https://doi.org/10.1039/D1SE01283E.

    Article  CAS  Google Scholar 

  19. Wang Y, Sun Y, Yan F, Zhu CL, Gao P, Zhang XT, Chen YJ. Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J Mater Chem A. 2018;6(18):8479. https://doi.org/10.1039/C8TA00517F.

    Article  CAS  Google Scholar 

  20. Guo ZY, Zhong Y, Xuan ZW, Mao CM, Du FL, Li GC. Polypyrrole-assisted synthesis of roselike MoS2/nitrogen-containing carbon/graphene hybrids and their robust lithium storage performances. RSC Adv. 2015;5(77):62624. https://doi.org/10.1039/C5RA09092J.

    Article  CAS  Google Scholar 

  21. Wang ML, Cui MZ, Liu WF, Liu XG, Xu BS. Facile synthesis of cyclodextrin functionalized reduced graphite oxide with the aid of ionic liquid for simultaneous determination of guanine and adenine. Electroanalysis. 2018;30(5):842. https://doi.org/10.1002/elan.201700715.

    Article  CAS  Google Scholar 

  22. Xiang R, Duan YJ, Peng LS, Wang Y, Tong C, Zhang L, Wei ZD. Three-dimensional Core@Shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts. Appl Catal B-Environ. 2019;246:41. https://doi.org/10.1016/j.apcatb.2019.01.035.

    Article  CAS  Google Scholar 

  23. Yu L, Mishra IK, Xie Y, Zhou H, Sun J, Zhou J, Ni Y, Luo D, Yu F, Yu Y. Ternary Ni2(1–x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy. 2018;53:492. https://doi.org/10.1016/j.nanoen.2018.08.025.

    Article  CAS  Google Scholar 

  24. Hui L, Xue Y, Huang B, Yu H, Zhang C, Zhang D, Jia D, Zhao Y, Li Y, Liu H. Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays. Nat Commun. 2018;9(1):1. https://doi.org/10.1038/s41467-018-07790-x.

    Article  CAS  Google Scholar 

  25. Huang C, Chu PK. Recommended practices and benchmarking of foam electrodes in water splitting. Trends Chem. 2022;4(25):1065. https://doi.org/10.1016/j.trechm.2022.09.008.

    Article  CAS  Google Scholar 

  26. Huang C, Zhang B, Wu Y, Ruan Q, Liu L, Su J, Tang Y, Liu R, Chu PK. Experimental and theoretical investigation of reconstruction and active phases on honeycombed Ni3N-Co3N/C in water splitting. Appl Catal B. 2021;297:120461. https://doi.org/10.1016/j.apcatb.2021.120461.

    Article  CAS  Google Scholar 

  27. Sun C, Zhao YJ, Yuan XY, Li JB, Jin HB. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022;41(8):2616. https://doi.org/10.1007/s12598-022-02021-1.

    Article  CAS  Google Scholar 

  28. Cai HZ, Yi JH, Wu F, Wei Y, Zhang XX, Hu CY. Preparation and characterization of tantalum coating on porous carbon foam by chemical vapor deposition. Chin J Rare Metals. 2020;44(10):1108. https://doi.org/10.13373/j.cnki.cjrm.XY19040006

    Article  Google Scholar 

  29. Vecera P, Chacon-Torres JC, Pichler T, Reich S, Soni HR, Gorling A, Edelthalhammer K, Peterlik H, Hauke F, Hirsch A. Precise determination of graphene functionalization by in situ raman spectroscopy. Nat Commun. 2017;8:15192. https://doi.org/10.1038/s41467-022-34281-x.

    Article  CAS  Google Scholar 

  30. Cui JX, Wang WS, Zhen L, Shao WZ, Chen ZL. Formation of FeMoO4 hollow microspheres via a chemical conversion-induced ostwald ripening process. Cryst Eng Comm. 2012;14(20):7025. https://doi.org/10.1039/C2CE25825K.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Hong Kong Scholars Program (No. XJ2018009), City University of Hong Kong Strategic Research Grant (SRG) (No. 7005505), City University of Hong Kong Donation Research Grant (No. 9229021), the National Natural Science Foundation of China (No. 52003129), Shandong Provincial Natural Science Foundation, China (No. ZR2019BB006) and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Wei Li or Paul K. Chu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhang, XL., Tang, J. et al. Spatially strain-induced and selective preparation of MoxN (x = 1, 2) as a highly effective nanoarchitectonic catalyst for hydrogen evolution reaction in a wide pH range. Rare Met. 42, 1446–1452 (2023). https://doi.org/10.1007/s12598-022-02227-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02227-3

Navigation