Skip to main content

Advertisement

Log in

CuS nanoenzyme against bacterial infection by in situ hydroxyl radical generation on bacteria surface

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nanoenzyme-mediated antibacterial strategies have been widely exploited to overcome the shortcomings (such as drug resistance and mild-to-severe side effects) of antibiotic therapy. The peroxidase-like activity of nanoenzymes possesses great potential against bacterial infection by the generation of hydroxyl radical (·OH) in the specific microenvironment. However, the lifetime of ·OH is extremely short, and a large amount of the ·OH generated within the infection microenvironment cannot come into contact with bacteria quickly enough, thus resulting in low treatment efficiency. Here, chitosan-oligosaccharide-modified CuS nanoparticles possessing positive charges (PCuS NPs) were prepared using a one-pot method. PCuS NPs exhibited efficient peroxidase-like activity. Importantly, the PCuS NPs can combine with bacteria via electrostatic attraction. The direct contact between the PCuS NPs and bacteria enabled the generation of ·OH in situ on the bacterial surface, ultimately leading to a high antibacterial efficacy at a low concentration in the presence of H2O2. At an effective antibacterial concentration, the PCuS NPs exhibited high cytocompatibility. Furthermore, in vivo results revealed that PCuS NPs not only decreased the size of abscesses but also reduced inflammation and promoted collagen fiber formation. Therefore, PCuS NPs possess great potential against bacterial infection via in situ ·OH generation based on electrostatic attraction.

Graphical abstract

摘要

为了克服抗生素治疗中存在的耐药性和中度至重度副作用等弊端,纳米酶介导的抗菌策略得到广泛的应用。通过 在特定微环境中产生羟基自由基(·OH),具有类过氧化物酶活性的纳米酶在治疗细菌感染中具有巨大的潜力。 然而,·OH 的寿命非常短,导致在微环境中产生的大量·OH 无法足够快速地接触细菌,因此治疗效率偏低。在本 研究中,通过一步法制备了带正电荷的壳寡糖修饰的CuS 纳米颗粒(PCuS NPs)。PCuS NPs 具有高效的类过氧 化物酶活性。重要的是,PCuS NPs 能够通过静电吸引与细菌结合。PCuS NPs 和细菌的直接接触能够使·OH 在细 菌表面原位产生,最终在低浓度H2O2 存在下呈现高的抗菌效率。在有效抗菌浓度下,PCuS NPs 具有良好的细胞 相容性。此外,体内结果表明,PCuS NPs 不仅能减小脓肿的尺寸,而且还能减轻炎症并促进胶原纤维的形成。综 上所述,PCuS NPs 能够通过静电吸引在细菌表面原位生成·OH,具有高的抗细菌感染的应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petrovic Fabijan A, Lin RC, Ho J, Maddocks S, Ben Zakour NL, Iredell JR. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020;5(3):465. https://doi.org/10.1038/s41564-019-0634-z.

    Article  CAS  Google Scholar 

  2. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603. https://doi.org/10.1128/CMR.00134-14.

    Article  CAS  Google Scholar 

  3. Boldock E, Surewaard BG, Shamarina D, Na M, Fei Y, Ali A, Williams A, Pollitt EJ, Szkuta P, Morris P. Human skin commensals augment Staphylococcus aureus pathogenesis. Nat Microbiol. 2018;3(8):881. https://doi.org/10.1038/s41564-018-0198-3.

    Article  CAS  Google Scholar 

  4. Smith PA, Koehler MF, Girgis HS, Yan D, Chen Y, Chen Y, Crawford JJ, Durk MR, Higuchi RI, Kang J. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature. 2018;561(7722):189. https://doi.org/10.1038/s41586-018-0483-6.

    Article  CAS  Google Scholar 

  5. Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppée JY, Wolz C, Tenson T, Van Bambeke F. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun. 2020;11(1):1. https://doi.org/10.1038/s41467-020-15966-7.

    Article  CAS  Google Scholar 

  6. Xie C, Zhang Q, Li Z, Ge S, Ma B. Sustained and microenvironment-accelerated release of minocycline from alginate injectable hydrogel for bacteria-infected wound healing. Polymers. 2022;14(9):1816. https://doi.org/10.3390/polym14091816.

    Article  CAS  Google Scholar 

  7. Marchant J. When antibiotics turn toxic. Nature. 2018;555(7697):431. https://doi.org/10.1038/d41586-018-03267-5.

    Article  CAS  Google Scholar 

  8. Couce A, Blázquez J. Side effects of antibiotics on genetic variability. FEMS Microbiol Rev. 2009;33(3):531. https://doi.org/10.1111/j.1574-6976.2009.00165.x.

    Article  CAS  Google Scholar 

  9. Blumenthal KG, Peter JG, Trubiano JA, Phillips EJ. Antibiotic allergy. Lancet. 2019;393(10167):183. https://doi.org/10.1016/S0140-6736(18)32218-9.

    Article  Google Scholar 

  10. Chin W, Zhong G, Pu Q, Yang C, Lou W, De Sessions PF, Periaswamy B, Lee A, Liang ZC, Ding X. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat Commun. 2018;9(1):1. https://doi.org/10.1038/s41467-018-03325-6.

    Article  CAS  Google Scholar 

  11. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031. https://doi.org/10.1128/CMR.00031-19.

    Article  CAS  Google Scholar 

  12. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903. https://doi.org/10.2147/IDR.S234610.

    Article  CAS  Google Scholar 

  13. Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19(1):23. https://doi.org/10.1038/s41579-020-0420-1.

    Article  CAS  Google Scholar 

  14. Rubey KM, Brenner JS. Nanomedicine to fight infectious disease. Adv Drug Deliver Rev. 2021;179:113996. https://doi.org/10.1016/j.addr.2021.113996.

    Article  CAS  Google Scholar 

  15. Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View. 2021;2(1):20200065. https://doi.org/10.1002/VIW.20200065.

    Article  Google Scholar 

  16. Chai MZ, An MW, Zhang XY, Chu PK. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met. 2022;41(2):540. https://doi.org/10.1007/s12598-021-01754-9.

    Article  CAS  Google Scholar 

  17. Ding M, Zhao W, Song LJ, Luan SF. Stimuli-responsive nanocarriers for bacterial biofilm treatment. Rare Met. 2022;41(2):482. https://doi.org/10.1007/s12598-021-01802-4.

    Article  CAS  Google Scholar 

  18. Wu M, Zhang Z, Liu Z, Zhang J, Zhang Y, Ding Y, Huang T, Xiang D, Wang Z, Dai Y, Wan X, Wang S, Qian H, Sun Q, Li L. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today. 2021;37:101104. https://doi.org/10.1016/j.nantod.2021.101104.

    Article  CAS  Google Scholar 

  19. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353. https://doi.org/10.1016/j.ajps.2022.01.001.

    Article  Google Scholar 

  20. Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano. 2021;15(12):18895. https://doi.org/10.1021/acsnano.1c08334.

    Article  CAS  Google Scholar 

  21. Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. An overview of the use of nanozymes in antibacterial applications. Chem Eng J. 2021;418:129431. https://doi.org/10.1016/j.cej.2021.129431.

    Article  CAS  Google Scholar 

  22. Vallabani NVS, Vinu A, Singh S, Karakoti A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interf Sci. 2020;567:154. https://doi.org/10.1016/j.jcis.2020.01.099.

    Article  CAS  Google Scholar 

  23. Karim MN, Singh M, Weerathunge P, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Della Gaspera E, Singh S. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater. 2018;1(4):1694. https://doi.org/10.1021/acsanm.8b00153.

    Article  CAS  Google Scholar 

  24. Wang C, Xiao Y, Zhu W, Chu J, Xu J, Zhao H, Shen F, Peng R, Liu Z. Photosensitizer-modified MnO2 nanoparticles to enhance photodynamic treatment of abscesses and boost immune protection for treated mice. Small. 2020;16(28):2000589. https://doi.org/10.1002/smll.202000589.

    Article  CAS  Google Scholar 

  25. Yang N, Guo H, Cao C, Wang X, Song X, Wang W, Yang D, Xi L, Mou X, Dong X. Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy. Biomaterials. 2021;275:120918. https://doi.org/10.1016/j.biomaterials.2021.120918.

    Article  CAS  Google Scholar 

  26. Qi Y, Ren S, Ye J, Tian Y, Wang G, Zhang S, Du L, Li Y, Che Y, Ning G. Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater. 2022;143:445. https://doi.org/10.1016/j.actbio.2022.02.034.

    Article  CAS  Google Scholar 

  27. Wang D, Peng F, Li J, Qiao Y, Li Q, Liu X. Butyrate-inserted Ni–Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Mater Today. 2017;20(5):238. https://doi.org/10.1016/j.mattod.2017.05.001.

    Article  CAS  Google Scholar 

  28. Lv R, Liang YQ, Li ZY, Zhu SL, Cui ZD, Wu SL. Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Met. 2022;41(2):639. https://doi.org/10.1007/s12598-021-01759-4.

    Article  CAS  Google Scholar 

  29. Ding Y, Yuan Z, Hu JW, Xu K, Wang H, Liu P, Cai KY. Surface modification of titanium implants with micro-nano-topography and NIR photothermal property for treating bacterial infection and promoting osseointegration. Rare Met. 2022;41(2):673. https://doi.org/10.1007/s12598-021-01830-0.

    Article  CAS  Google Scholar 

  30. Geng H, Pan Y, Zhang R, Gao D, Wang Z, Li B, Li N, Guo D, Xing C. Binding to amyloid-β protein by photothermal blood-brain barrier-penetrating nanoparticles for inhibition and disaggregation of fibrillation. Adv Funct Mater. 2021;31(41):2102953. https://doi.org/10.1002/adfm.202102953.

    Article  CAS  Google Scholar 

  31. Jia Q, Song Q, Li P, Huang W. Rejuvenated photodynamic therapy for bacterial infections. Adv Healthc Mater. 2019;8(14):1900608. https://doi.org/10.1002/adhm.201900608.

    Article  CAS  Google Scholar 

  32. Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16(23):2000553. https://doi.org/10.1002/smll.202000553.

    Article  CAS  Google Scholar 

  33. Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C, Yin JJ. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv Healthc Mater. 2018;28(28):1801484. https://doi.org/10.1002/adfm.201801484.

    Article  CAS  Google Scholar 

  34. Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental implications of hydroxyl radicals (·OH). Chem Rev. 2015;115(24):13051. https://doi.org/10.1021/cr500310b.

    Article  CAS  Google Scholar 

  35. Hou JT, Zhang M, Liu Y, Ma X, Duan R, Cao X, Yuan F, Liao YX, Wang S, Ren WX. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: a review. Coordin Chem Rev. 2020;421:213457. https://doi.org/10.1016/j.ccr.2020.213457.

    Article  CAS  Google Scholar 

  36. Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr. 2015. https://doi.org/10.1128/microbiolspec.MB-0018-2015.

    Article  Google Scholar 

  37. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol. 2019;17(7):403. https://doi.org/10.1038/s41579-019-0201-x.

    Article  CAS  Google Scholar 

  38. Adekanmbi EO, Giduthuri AT, Waymire S, Srivastava SK. Utilization of dielectrophoresis for the quantification of rare earth elements adsorbed on cupriavidus necator. ACS Sustain Chem Eng. 2020;8(3):1353. https://doi.org/10.1021/acssuschemeng.9b03878.

    Article  CAS  Google Scholar 

  39. Zhang C, Fu YY, Zhang X, Yu C, Zhao Y, Sun SK. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton T. 2015;44(29):13112. https://doi.org/10.1039/c5dt01467k.

    Article  CAS  Google Scholar 

  40. Pan Q, Peng X, Cun JE, Li J, Pu Y, He B. In-situ drug generation and controllable loading: rational design of copper-based nanosystems for chemo-photothermal cancer therapy. Chem Eng J. 2021;409:128222. https://doi.org/10.1016/j.cej.2020.128222.

    Article  CAS  Google Scholar 

  41. Yi X, Chen L, Chen J, Maiti D, Chai Z, Liu Z, Yang K. Biomimetic copper sulfide for chemo-radiotherapy: enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv Funct Mater. 2018;28(9):1705161. https://doi.org/10.1002/adfm.201705161.

    Article  CAS  Google Scholar 

  42. Xiao Y, Su D, Wang X, Wu S, Zhou L, Shi Y, Fang S, Cheng HM, Li F. CuS microspheres with tunable interlayer space and micropore as a highrate and long-life anode for sodium-ion batteries. Adv Energy Mater. 2018;8(22):1800930. https://doi.org/10.1002/aenm.201800930.

    Article  CAS  Google Scholar 

  43. Sarkar AK, Bediako JK, Choi JW, Yun YS. Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification. NPG Asia Mater. 2019;11(1):1. https://doi.org/10.1038/s41427-018-0104-8.

    Article  CAS  Google Scholar 

  44. Li PC, Liao GM, Kumar SR, Shih CM, Yang CC, Wang DM, Lue SJ. Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta. 2016;187:616. https://doi.org/10.1016/j.electacta.2015.11.117.

    Article  CAS  Google Scholar 

  45. Zheng W, Yang Z, Yang J, Qu W, Feng Y, Jiang S, Zhao S, Shih K, Li H. Favorably adjusting the pore characteristics of copper sulfide by template regulation for vapor-phase elemental mercury immobilization. J Mater Chem A. 2022;10(19):10729. https://doi.org/10.1039/D2TA00022A.

    Article  CAS  Google Scholar 

  46. Yuan M, Guo X, Pang H. Derivatives (Cu/CuO, Cu/Cu2O, and CuS) of Cu superstructures reduced by biomass reductants. Mater Today Chem. 2021;21:100519. https://doi.org/10.1016/j.mtchem.2021.

    Article  CAS  Google Scholar 

  47. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J Am Chem Soc. 2019;141(2):849. https://doi.org/10.1021/jacs.8b08714.

    Article  CAS  Google Scholar 

  48. Dai X, Chen L, Li Z, Li X, Wang J, Hu X, Zhao L, Jia Y, Sun SX, Wu Y, He Y. CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. J Colloid Interfaces Sci. 2021;603:220. https://doi.org/10.1016/j.jcis.2021.06.107.

    Article  CAS  Google Scholar 

  49. Guo J, Tian H, He J. Integration of CuS nanoparticles and cellulose fibers towards fast, selective and efficient capture and separation of mercury ions. Chem Eng J. 2021;408:127336. https://doi.org/10.1016/j.cej.2020.127336.

    Article  CAS  Google Scholar 

  50. Cao J, Sun Q, Shen AG, Fan B, Hu JM. Nano Au@Cu2-xS with near-infrared photothermal and peroxidase catalytic activities redefines efficient antibiofilm-oriented root canal therapy. Chem Eng J. 2021;422:130090. https://doi.org/10.1016/j.cej.2021.130090.

    Article  CAS  Google Scholar 

  51. Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration. 2022;2(2):20210238. https://doi.org/10.1002/exp.20210238.

    Article  Google Scholar 

  52. Wu S, Xu C, Zhu Y, Zheng L, Zhang L, Hu Y, Yu B, Wang Y, Xu FJ. Biofilm-sensitive photodynamic nanoparticles for enhanced penetration and antibacterial efficiency. Adv Funct Mater. 2021;31(33):2103591. https://doi.org/10.1002/adfm.202103591.

    Article  CAS  Google Scholar 

  53. Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. Wires Nanomed Nanobi. 2022;14(3):e1775. https://doi.org/10.1002/wnan.1775.

    Article  Google Scholar 

  54. Li Z, Liu W, Ni P, Zhang C, Wang B, Duan G, Chen C, Jiang Y, Lu Y. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem Eng J. 2022;428:131396. https://doi.org/10.1016/j.cej.2021.13.

    Article  CAS  Google Scholar 

  55. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc. 2018;13(7):1506. https://doi.org/10.1038/s41596-018-0001-1.

    Article  CAS  Google Scholar 

  56. Ji S, Jiang B, Hao H, Chen Y, Dong J, Mao Y, Zhang Z, Gao R, Chen W, Zhang R. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat Catal. 2021;4(5):407. https://doi.org/10.1038/s41929-021-00609-x.

    Article  CAS  Google Scholar 

  57. Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem Eng J. 2021;408:127240. https://doi.org/10.1016/j.cej.2020.127240.

    Article  CAS  Google Scholar 

  58. Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7(13):3207. https://doi.org/10.7150/thno.19738.

    Article  CAS  Google Scholar 

  59. Bai Q, Liang M, Wu W, Zhang C, Li X, Liu M, Yang D, Yu WW, Hu Q, Wang L, Du F, Sui N, Zhu Z. Plasmonic nanozyme of graphdiyne nanowalls wrapped hollow copper sulfide nanocubes for rapid bacteria-killing. Adv Funct Mater. 2022;32(20):2112683. https://doi.org/10.1002/adfm.202112683.

    Article  CAS  Google Scholar 

  60. Borthakur P, Boruah PK, Das P, Das MR. CuS nanoparticles decorated MoS2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. New J Chem. 2021;45(19):8714. https://doi.org/10.1039/d1nj00856k.

    Article  CAS  Google Scholar 

  61. Borthakur P, Boruah PK, Das MR. Facile synthesis of CuS nanoparticles on two-dimensional nanosheets as efficient artificial nanozyme for detection of ibuprofen in water. J Environ Chem Eng. 2021;9(1):104635. https://doi.org/10.1016/j.jece.2020.104635.

    Article  CAS  Google Scholar 

  62. Swaidan A, Borthakur P, Boruah PK, Das MR, Barras A, Hamieh S, Toufaily J, Hamieh T, Szunerits S, Boukherroub R. A facile preparation of CuS-BSA nanocomposite as enzyme mimics: application for selective and sensitive sensing of Cr(VI) ions. Sens Actuators B-Chem. 2019;294:253. https://doi.org/10.1016/j.snb.2019.05.052.

    Article  CAS  Google Scholar 

  63. Zhan Y, Zeng Y, Li L, Guo L, Luo F, Qiu B, Huang Y, Lin Z. Cu2+-modified boron nitride nanosheets-supported subnanometer gold nanoparticles: an oxidase-mimicking nanoenzyme with unexpected oxidation properties. Anal Chem. 2020;92(1):1236. https://doi.org/10.1021/acs.analchem.9b04384.

    Article  CAS  Google Scholar 

  64. Wang S, Zhao J, Zhang L, Zhang C, Qiu Z, Zhao S, Huang Y, Liang H. A unique multifunctional nanoenzyme tailored for triggering tumor microenvironment activated NIR-II photoacoustic imaging and chemodynamic/photothermal combined therapy. Adv Healthc Mater. 2022;11(3):2102073. https://doi.org/10.1002/adhm.202102073.

    Article  CAS  Google Scholar 

  65. Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505. https://doi.org/10.1038/nri3010.

    Article  CAS  Google Scholar 

  66. Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, O’Connell RM, Iwakura Y, Cheung AL, Cheng G. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol. 2007;179(10):6933. https://doi.org/10.4049/jimmunol.179.10.6933.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 82100974), the Natural Science Foundation of Shandong Province (No. ZR2021QH241), and Qilu Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Zhang or Bao-Jin Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xie, CJ., Ren, XW. et al. CuS nanoenzyme against bacterial infection by in situ hydroxyl radical generation on bacteria surface. Rare Met. 42, 1899–1911 (2023). https://doi.org/10.1007/s12598-022-02223-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02223-7

Keywords

Navigation