Skip to main content
Log in

Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing metal compounds based on their structure and chemical composition is essential in achieving desirable performance in methane oxidation, because of the synergistic effect between different metal elements. Herein, a bimetallic Ru–Pt catalyst on TiO2 support (RuPt-O/TiO2) was prepared by in situ reduction followed by calcination in air. Compared with monometallic catalysts (Ru-O/TiO2 and Pt-O/TiO2), the synergistic effect of mixed metals endowed bimetallic catalysts with excellent stability and outstanding performance in methane oxidation, with a reaction rate of 13.9 × 10–5 \({\mathrm{mol}}_{{\mathrm{CH}}_{4}}^{-1}\cdot {\mathrm{g}}_{(\mathrm{Ru}+\mathrm{Pt})}^{-1}\cdot {\mathrm{s}}^{-1}\) at 303 °C. The varied characterization results revealed that among the bimetallic catalysts, RuO2 was epitaxially grown on the TiO2 substrate owing to lattice matching between them, and part of the PtOx adhered to the RuO2 surface, in addition to a single PtOx nanoparticle with 4 nm in size. Consequently, Pt mainly existed in the form of Pt2+ and Pt4+ and a small amount of zero valence in the bimetallic catalyst, prompting the adsorption and activation of methane as the first and rate-controlling step for CH4 oxidation. More importantly, the RuO2 species provided additional oxygen species to facilitate the redox cycle of the PtOx species. This study opens a new route for structurally designing promising catalysts for CH4 oxidation.

Graphical abstract

摘要

双金属催化剂体系因为特有的电子效应和协同效应,在氧化、加氢等众多反应中受到广泛关注。因此,设计合理结构和组成的双金属催化剂能够实现甲烷高效催化燃烧。本文通过原位还原和空气焙烧制备得到RuPt-O/TiO2双金属催化剂,相比于Ru-O/TiO2和Pt-O/TiO2催化剂,RuPt-O/TiO2催化剂由于协同效应表现出更高的甲烷燃烧活性和稳定性。在303 °C下甲烷燃烧反应速率为13.9×10-5 mol_(CH_4)^(-1)·g_((Ru+Pt))^(-1)·s^(-1),比单金属催化剂高一个数量级。各种表征结果表明,在双金属催化剂中,由于二者之间的晶格匹配,RuO2在TiO2基底上外延生长,而部分PtOx粘附在RuO2表面,同时还单独存在4 nm的PtOx纳米颗粒,使得在双金属催化剂中Pt主要以Pt2+和Pt4+的形式存在,其高氧化态促使甲烷的吸附和活化。更重要的是,RuO2物种还可以提供额外的氧物种,以促进PtOx物种的氧化还原循环。论文为设计具有更优性能的甲烷氧化催化剂提供了一种新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li JJ, Abbas SU, Wang HQ, Zhang Zhicheng HuWP. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-micro Lett. 2021;13:216. https://doi.org/10.1007/s40820-021-00738-9.

    Article  CAS  Google Scholar 

  2. Guo MX, Du JC, Li H, Zhang XJ, Zhang AM, Zhao YK. New research progress on precious metal catalysts for methane combustion. Chin J Rare Met. 2021;45(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY19110015.

    Article  Google Scholar 

  3. Ding YQ, Wu QQ, Lin B, Guo YL, Guo Y, Wang YS, Wang L, Zhan WC. Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Appl Catal B-Environ. 2020;266:118631. https://doi.org/10.1016/j.apcatb.2020.118631.

    Article  CAS  Google Scholar 

  4. Tang X, Lou Y, Zhao RL, Tang BJ, Guo WY, Guo YL, Zhan WC, Jia YY, Wang L, Dai S, Guo Y. Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chem Eng J. 2021;418:129398. https://doi.org/10.1016/j.cej.2021.129398.

    Article  CAS  Google Scholar 

  5. Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo Y, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10:1611. https://doi.org/10.1038/s41467-019-09662-4.

    Article  CAS  Google Scholar 

  6. Zhao ZY, Wang BW, Ma J, Zhan WC, Wang L, Guo Y, Guo YL, Lu GZ. Catalytic combustion of methane over Pd/SnO2 catalysts. Chin J Catal. 2017;38(8):1322. https://doi.org/10.1016/s1872-2067(17)62864-x.

    Article  CAS  Google Scholar 

  7. Cao XQ, Zhou J, Li S, Qin GW. Ultra-stable metal nano-catalyst synthesis strategy: a perspective. Rare Met. 2019;39(2):113. https://doi.org/10.1007/s12598-019-01350-y.

    Article  CAS  Google Scholar 

  8. Chetyrin IA, Bukhtiyarov AV, Prosvirin IP, Khudorozhkov AK, Bukhtiyarov VI. In Situ XPS and MS study of methane oxidation on the Pd-Pt/Al2O3 catalysts. Top Catal. 2020;63(1–2):66. https://doi.org/10.1007/s11244-019-01217-7.

    Article  CAS  Google Scholar 

  9. Nie HY, Howe JY, Lachkov PT, Chin CY. Chemical and structural dynamics of nanostructures in bimetallic Pt-Pd catalysts, their inhomogeneity, and their roles in methane oxidation. ACS Catal. 2019;9(6):5445. https://doi.org/10.1021/acscatal.9b00485.

    Article  CAS  Google Scholar 

  10. Yang YF, Lee JY, Dorakhan R, Nie HY, Fu GS, Quarantotto A, Howe JY, Chin CY. Active site structure and methane oxidation reactivity of bimetallic Pd and Pt nanoparticles. Appl Catal A-Gen. 2022;629:118290. https://doi.org/10.1021/j.apcata.2021.118290.

    Article  CAS  Google Scholar 

  11. Choudhary TV, Banerjee S, Choudhary VR. Catalysts for combustion of methane and lower alkanes. Appl Catal A-Gen. 2002;234:1. https://doi.org/10.1016/s0926-860x(02)00231-4.

    Article  CAS  Google Scholar 

  12. Mehrabadi B, White R, Shakouri A, Regalbuto J, Weidner J, Monnier J. Ruthenium-platinum bimetallic catalysts with controlled surface compositions and enhanced performance for methanol oxidation. Catal Today. 2019;334:156. https://doi.org/10.1016/j.cattod.2018.11.042.

    Article  CAS  Google Scholar 

  13. Christensen S, Feng H, Libera J, Guo N, Miller J, Stair P, Elam J. Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett. 2010;10(8):3047. https://doi.org/10.1021/nl101567m.

    Article  CAS  Google Scholar 

  14. Zhang JM, Qu XM, Han Y, Shen LF, Yin SH, Li G, Jiang YX, Sun SG. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance. Appl Catal B-Environ. 2020;263:118345. https://doi.org/10.1016/j.apcatb.2019.118345.

    Article  CAS  Google Scholar 

  15. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lv DC, Ahmad A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021;40(9):2354. https://doi.org/10.1007/s12598-021-01727-y.

    Article  CAS  Google Scholar 

  16. Kim A, Sanchez C, Patriarche G, Ersen O, Moldovan S, Wisnet A, Sassoye C, Debecker D. Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure. Catal Sci Technol. 2016;6(22):8117. https://doi.org/10.1039/c6cy01677d.

    Article  CAS  Google Scholar 

  17. Kim A, Debecker D, Devred F, Dubois V, Sanchez C, Sassoye C. CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports. Appl Catal B-Environ. 2018;220:615. https://doi.org/10.1016/j.apcatb.2017.08.058.

    Article  CAS  Google Scholar 

  18. Gilroy K, Ruditskiy A, Peng HC, Qin D, Xia YN. Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev. 2016;116(18):10414. https://doi.org/10.1021/acs.chemrev.6b00211.

    Article  CAS  Google Scholar 

  19. Zhang ZC, Liu GG, Cui XY, Gong Y, Yi D, Zhang QH, Zhu CZ, Saleem F, Chen B, Lai ZC, Yun QB, Cheng HF, Huang ZQ, Peng YW, Fan ZX, Li B, Dai WR, Chen W, Du YH, Ma L, Sun C-J, Hwang I, Chen SM, Song L, Ding F, Gu L, Zhu YH, Zhang H. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci Adv. 2021;7:eabd6647. https://doi.org/10.1126/sciadv.abd6647.

    Article  CAS  Google Scholar 

  20. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren YL, Xu CL, Zhang ZC. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets Boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed. 2022. https://doi.org/10.1002/anie.202200899.

    Article  Google Scholar 

  21. Guan QQ, Zhu CW, Lin Y, Vovk E, Zhou XH, Yang Y, Yu HC, Cao L, Wang HW, Zhang XH, Liu XY, Zhang MK, Wei SQ, Li WX, Lu JL. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat Catal. 2021;4(10):840. https://doi.org/10.1038/s41929-021-00679-x.

    Article  CAS  Google Scholar 

  22. Cui MY, Johnson G, Zhang ZY, Li S, Hwang S, Zhang X, Zhang S. AgPd nanoparticles for electrocatalytic CO2 reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale. 2020;12(26):14068. https://doi.org/10.1039/d0nr03203d.

    Article  CAS  Google Scholar 

  23. Ma M, Wang H, Liu H. Steering spatially separated dual sites on nano-TiO2 through SMSI and lattice matching for robust photocatalytic hydrogen evolution. Chin Chem Let. 2021;32(11):3613. https://doi.org/10.1016/j.cclet.2021.04.012.

    Article  CAS  Google Scholar 

  24. Nguyen-Phan T, Luo S, Vovchok D, Llorca J, Sallis S, Kattel S, Xu WQ, Piper L, Polyansky D, Senanayake S, Stacchiola D, Rodriguez J. Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production. Phys Chem Chem Phys. 2016;18(23):15972. https://doi.org/10.1039/c6cp00472e.

    Article  CAS  Google Scholar 

  25. Yan JQ, Wu GJ, Guan NJ, Li LD. Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl Catal B-Environ. 2014;152–153:280. https://doi.org/10.1016/j.apcatb.2014.01.049.

    Article  CAS  Google Scholar 

  26. Arzac G, Montes O, Fernández A. Pt-impregnated catalysts on powdery SiC and other commercial supports for the combustion of hydrogen under oxidant conditions. Appl Catal B Environ. 2017;201:391. https://doi.org/10.1016/j.apcatb.2016.08.042.

    Article  CAS  Google Scholar 

  27. Bian X, Xiao KY, Wang SH, Qiu BL. Preparation and properties of xCeO2-yWO3-TiO2 denitrification catalyst. Chin J Rare Met. 2020;44(9):974. https://doi.org/10.13373/j.cnki.cjrm.xy19030020.

    Article  CAS  Google Scholar 

  28. Wang HQ, Liu HL, Ji YC, Yang RQ, Zhang ZF, Wang X, Liu H. Hybrid nanostructures of pit-rich TiO2 nanocrystals with Ru loading and N doping for enhanced solar water splitting. Chem Commun. 2019;55(19):2781. https://doi.org/10.1039/c8cc10093d.

    Article  CAS  Google Scholar 

  29. Cui X, Chen L, Wang Y, Chen H, Zhao W, Li Y, Shi J. Fabrication of hierarchically porous RuO2-CuO/Al-ZrO2 composite as highly efficient catalyst for ammonia-selective catalytic oxidation. ACS Catal. 2014;4(7):2195. https://doi.org/10.1021/cs500421x.

    Article  CAS  Google Scholar 

  30. Liu H, Li X, Dai QG, Zhao HL, Chai T, Guo YL, Guo Y, Wang L, Zhan WC. Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: elucidating the influence of surface acidity. Appl Catal B-Environ. 2021;282:119577. https://doi.org/10.1016/j.apcatb.2020.119577.

    Article  CAS  Google Scholar 

  31. Chen SL, Abdel-Mageed AM, Li D, Bansmann J, Cisneros S, Biskupek J, Huang WX, Behm RJ. Morphology-engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation. Angew Chem Int Ed Engl. 2019;58(31):10732. https://doi.org/10.1002/anie.201903882.

    Article  CAS  Google Scholar 

  32. Ma Y, Zhang XH, Cao L, Lu JL. Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catal Sci Technol. 2021;11(8):2844. https://doi.org/10.1039/d0cy02279a.

    Article  CAS  Google Scholar 

  33. Wang Z, Huang ZP, Brosnahan JT, Zhang S, Guo YL, Guo Y, Wang L, Wang YS, Zhan WC. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environ Sci Technol. 2019;53(9):5349. https://doi.org/10.1021/acs.est.9b01929.

    Article  CAS  Google Scholar 

  34. Liu H, Yang J, Jia YY, Wang ZQ, Jiang MX, Shen K, Zhao HL, Guo YL, Guo Y, Wang L, Dai S, Zhan W. Significant improvement of catalytic performance for chlorinated volatile organic compound oxidation over RuOx supported on acid-etched Co3O4. Environ Sci Technol. 2021;55(15):10734. https://doi.org/10.1021/acs.est.1c02970.

    Article  CAS  Google Scholar 

  35. Weber T, Abb M, Khalid O, Pfrommer J, Carla F, Znaiguia R, Vonk V, Stierle A, Over H. In situ studies of the electrochemical reduction of a supported ultrathin single-crystalline RuO2(110) layer in an acidic environment. J Phys Chem C. 2019;123(7):3979. https://doi.org/10.1021/acs.jpcc.8b10741.

    Article  CAS  Google Scholar 

  36. Oh S, Mitchell P, Siewert R. Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives. J catal. 1991;132:287. https://doi.org/10.1016/0021-9517(91)90149-x.

    Article  CAS  Google Scholar 

  37. Zhou GF, Ma J, Bai S, Wang L, Guo Y. CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Met. 2020;39(7):800. https://doi.org/10.1007/s12598-019-01347-7.

    Article  CAS  Google Scholar 

  38. Feng Y, Wang CC, Wang C, Huang HB, Hsi H, Duan E, Liu YX, Guo GS, Dai HX, Deng J. Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. J Hazard Mater. 2022;424:127337. https://doi.org/10.1016/j.jhazmat.2021.127337.

    Article  CAS  Google Scholar 

  39. Yu XH, Dai LY, Deng JG, Liu YX, Jing L, Zhang X, Gao RY, Hou ZQ, Wei L, Dai HX. An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst. Appl Catal B-Environ. 2022;305:121037. https://doi.org/10.1006/j.apcatb.2021.121037.

    Article  CAS  Google Scholar 

  40. Hadjiivanov K, Lavalley J, Lamotte J, Mauge F, Saint-Just J, Che M. FTIR study of CO interaction with Ru/TiO2 catalysts. J Catal. 1998;176:415. https://doi.org/10.1016/jcat.1998.2038.

    Article  CAS  Google Scholar 

  41. Dongapure P, Bagchi S, Mayadevi S, Devi R. Variations in activity of Ru/TiO2 and Ru/Al2O3 catalysts for CO2 hydrogenation: an investigation by in-situ infrared spectroscopy studies. Mol Catal. 2020;482:110700. https://doi.org/10.1016/j.mcat.2019.110700.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Nos. 21922602, 22076047 and U21A20326), Shanghai Science and Technology Innovation Action Plan (No. 20dz1204200) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Cheng Zhan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, SY., Ye, F., Zhang, NN. et al. Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion. Rare Met. 42, 165–175 (2023). https://doi.org/10.1007/s12598-022-02118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02118-7

Keywords

Navigation