Skip to main content
Log in

Thermoelectric performance of (AgBiTe2)1-x(SnTe)x with stable cubic enabled by enhanced configurational entropy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ABX2 (A = Ag, Na, Cu; B = Sb, Bi; X = S, Se, Te) (Groups I-V-VI2) compounds, which are all characterized by the ultralow lattice thermal conductivity because of their strong lattice anharmonicity caused by lone-pair electrons, have aroused wide attention in thermoelectric community. The practical application of thermoelectric devices usually requires both the compatible n-type and p-type materials simultaneously. However, most of I-V-VI2 compounds are intrinsic p-type semiconductors, lacking their n-type counterparts for thermoelectrics. Herein, in this work, we increase the configuration entropy of AgBiTe2 by alloying SnTe, in order to stabilize the cubic phase at room temperature. With further optimization of thermal and electrical performance, the thermoelectric performance could be improved simultaneously in both n- and p-type (AgBiTe2)1-x(SnTe)x (x = 0.3, 0.4) solid solutions. Finally, p-type compound with the nominal composition of (AgBi0.99Cd0.01Te2)0.6(SnTe)0.4 and n-type of (AgBiTe2)0.7(SnTe)0.3 ~ Br 6% show the maximum zT of ~ 0.33 and ~ 0.21, at 381 and 423 K, respectively.

Graphical abstract

摘要

ABX2 (A = Ag, Na, Cu;B =Sb, Bi; X = S, Se, Te) ( I-V-VI2族)化合物因其由孤对电子引起的晶格非谐性强而具有极低的晶格热导率,引起了热电学界的广泛关注。热电器件的实际应用通常需要同时具有相对应的n型和p型材料 然而, 大多数I-V-VI2族化合物是本征p型半导体,对应的n型热电半导体较为缺乏。在本文中,我们通过固溶SnTe来增加AgBiTe2的构型熵, 从而在室温下获得稳定的立方相。随着热电性能的进一步优化,n型和p型 (AgBiTe2)1-x(SnTe)x (x = 0.3, 0.4)固溶体的热电性能可同时提高 最终, 名义组分为(AgBi0.99Cd0.01Te2)0.6(SnTe)0.4的p型固溶体和名义组分为(AgBiTe2)0.7(SnTe)0.3~Br 6%的n型固溶体在381和423 K时分别取得~0.33和~0.21的热电优值

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457. https://doi.org/10.1126/science.1158899.

    Article  CAS  Google Scholar 

  2. Tan GJ, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123. https://doi.org/10.1021/acs.chemrev.6b00255.

    Article  CAS  Google Scholar 

  3. Chen ZW, Zhang XY, Lin SQ, Chen LD, Pei YZ. Rationalizing phonon dispersion for lattice thermal conductivity of solids. Natl Sci Rev. 2018;5(6):888. https://doi.org/10.1093/nsr/nwy097.

    Article  CAS  Google Scholar 

  4. Chen QF, Wang XX, Wu ZS, Liu CY, Miao L. Recent advances in SnSe-based thermoelectric materials. Chin J Rare Met. 2020;44(12):1316. https://doi.org/10.13373/j.cnki.cjrm.xy19050002.

    Article  CAS  Google Scholar 

  5. Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0. 85Se0.15 by point defect. Rare Met. 2018;37(4):326. https://doi.org/10.1007/s12598-017-0990-x.

    Article  CAS  Google Scholar 

  6. Galazka K, Xie WJ, Populoh S, Aguirre MH, Yoon S, Buettner G, Weidenkaff A. Tailoring thermoelectric properties of Zr0.43Hf0. 57NiSn half-Heusler compound by defect engineering. Rare Met. 2020;39(6):659. https://doi.org/10.1007/s12598-020-01392-7.

    Article  CAS  Google Scholar 

  7. Wang RF, Li S, Xue WH, Chen C, Wang YM, Liu XJ, Zhang Q. Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying. Rare Met. 2021;40(1):4. https://doi.org/10.1007/s12598-020-01569-0.

    Article  CAS  Google Scholar 

  8. Pei YZ, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012;24(46):6125. https://doi.org/10.1002/adma.201202919.

    Article  CAS  Google Scholar 

  9. Wu Y, Lou Q, Qiu Y, Guo J, Mei ZY, Xiao Xu, Feng J, He JQ, Ge ZH. Highly enhanced thermoelectric properties of nanostructured Bi2S3 bulk materials via carrier modification and multi-scale phonon scattering. Inorg Chem Front. 2019;6(6):1374. https://doi.org/10.1039/c9qi00213h

    Article  CAS  Google Scholar 

  10. Li NH, He WL, Li CJ, Wang G, Wang GY, Zhou XY, Lu X. The role of electronegativity in the thermoelectric performance of GeTe-I-V-VI2 solid solutions. J Mater Chem A. 2021;9(4):2385. https://doi.org/10.1039/D0TA10268G.

    Article  CAS  Google Scholar 

  11. Roychowdhury S, Panigrahi R, Perumal R, Biswas K. Ultrahigh thermoelectric figure of merit and enhanced mechanical stability of p-type AgSb1−xZnxTe2. ACS Energy Lett. 2017;2(2):349. https://doi.org/10.1021/acsenergylett.6b00639.

    Article  CAS  Google Scholar 

  12. Hong M, Chen ZG, Yang L, Liao ZM, Zou YC, Chen YH, Matsumura S, Zou J. Achieving zT > 2 in p-Type AgSbTe2−xSex alloys via exploring the extra light Valence band and introducing dense stacking faults. Adv Energy Mater. 2017;8(9):1702333. https://doi.org/10.1002/aenm.201702333.

    Article  CAS  Google Scholar 

  13. Pan L, Lang YD, Zhao L, Berardan D, Amzallag E, Xu C, Gu YF, Chen CC, Zhao LD, Shen XD, Lyu YN, Lu CH, Wang YF. Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. J Mater Chem A. 2018;6(27):13340. https://doi.org/10.1039/C8TA03521K.

    Article  CAS  Google Scholar 

  14. Ren ZS, Shuai J, Mao J, Zhu Q, Song SW, Ni YZ, Chen S. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta Mater. 2018;143:265. https://doi.org/10.1016/j.actamat.2017.10.015.

    Article  CAS  Google Scholar 

  15. Roychowdhury S, Ghosh T, Arora R, Samanta M, Xie L, Singh N, Soni A, He JQ, Waghmare UV, Biswas K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science. 2021;371(6530):722. https://doi.org/10.1126/science.abb3517.

    Article  CAS  Google Scholar 

  16. Li D, Qin XY, Zou TH, Zhang J, Ren BJ, Song CJ, Liu YF, Wang L, Xin HX, Li JC. High thermoelectric properties for Sn-doped AgSbSe2. J Alloy Compd. 2015;635:87. https://doi.org/10.1016/j.jallcom.2014.11.081.

    Article  CAS  Google Scholar 

  17. Ng HK, Abutaha A, Voiry D, Verzhbitskiy I, Cai YQ, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G, Hippalgaonkar K. Effects of structural phase transition on thermoelectric performance in lithium-intercalated molybdenum disulfide (LixMoS2). ACS Appl Mater Interfaces. 2019;11(13):12184. https://doi.org/10.1021/acsami.8b22105.

    Article  CAS  Google Scholar 

  18. Li S, Zhang FH, Chen C, Li XF, Cao F, Sui JH, Liu XJ, Ren ZF, Zhang Q. Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot forging. Acta Mater. 2020;190:1. https://doi.org/10.1021/acsami.8b22105.

    Article  CAS  Google Scholar 

  19. Rathore E, Juneja R, Culver SP, Minafra N, Singh AK, Zeier WG, Biswas K. Origin of ultralow thermal conductivity in n-type cubic bulk AgBiS2: soft Ag vibrations and local structural distortion induced by the Bi 6s2 lone pair. Chem Mater. 2019;31(6):2106. https://doi.org/10.1021/acs.chemmater.9b00001.

    Article  CAS  Google Scholar 

  20. Goto Y, Nishida A, Nishiate H, Murata M, Lee CH, Miura A, Moriyoshi C, Kuroiwad Y, Mizuguchia Y. Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material. Dalton Trans. 2018;47(8):2575. https://doi.org/10.1039/C7DT04821A.

    Article  CAS  Google Scholar 

  21. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nat Commun. 2015;6:8485. https://doi.org/10.1038/ncomms9485.

    Article  CAS  Google Scholar 

  22. Liu RH, Chen HY, Zhao KP, Qin YT, Jiang BB, Zhang TS, Sha G, Shi X, Uher C, Zhang WQ, Chen LD. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv Mater. 2017;29(38):1702712. https://doi.org/10.1002/adma.201702712.

    Article  CAS  Google Scholar 

  23. Huang ZW, Miller SA, Ge BH, Yan MT, Anand S, Wu TM, Nan PF, Zhu YH, Zhuang W, Snyder GJ, Jiang P, Bao XH. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2. Angew Chem Int Ed. 2017;129(45):14301. https://doi.org/10.1002/ange.201708134.

    Article  Google Scholar 

  24. Roychowdhury S, Ghosh T, Arora R, Waghmare UV, Biswas K. Stabilizing n-type Cubic GeSe by entropy-driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew Chem Int Ed. 2018;130(46):15167. https://doi.org/10.1002/ange.201809841.

    Article  Google Scholar 

  25. Zhu HX, Zhao T, Zhang B, An ZB, Mao SC, Wang GY, Han XD, Lu X, Zhang JW, Zhou XY. Entropy engineered cubic n-type AgBiSe2 alloy with high thermoelectric performance in fully extended operating temperature range. Adv Energy Mater. 2020;11(5):2003304. https://doi.org/10.1002/aenm.202003304.

    Article  CAS  Google Scholar 

  26. Qiu YT, Jin Y, Wang DY, Guan MJ, He WK, Peng S, Liu RH, Gao X, Zhao LD. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J Mater Chem A. 2019;7(46):26393. https://doi.org/10.1039/C9TA10963C.

    Article  CAS  Google Scholar 

  27. Dargusch M, Liu WD, Chen ZG. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems. Adv Sci. 2020;7(18):2001362. https://doi.org/10.1002/advs.202001362.

    Article  CAS  Google Scholar 

  28. Liu WD, Wang DZ, Liu QF, Zhou W, Shao ZP, Chen ZG. High-performance GeTe-based thermoelectrics: from materials to devices. Adv Energy Mater. 2020;10(19):2000367. https://doi.org/10.1002/aenm.202000367.

    Article  CAS  Google Scholar 

  29. Bernges T, Peilstöcker J, Dutta M, Ohno S, Culver SP, Biswas K, Zeier WG. Local structure and influence of Sb substitution on the structure−transport properties in AgBiSe2. Inorg Chem. 2019;58(14):9236. https://doi.org/10.1021/acs.inorgchem.9b00874.

    Article  CAS  Google Scholar 

  30. Liu ZH, Sun JF, Mao S, Zhu HT, Ren WY, Zhou JC, Wang ZM, Singh DJ, Sui JH, Chu CW, Ren ZF. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc Natl Acad Sci USA. 2018;115(21):5332. https://doi.org/10.1073/pnas.1802020115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51772035 and 11874356), the Fundamental Research Funds for the Central Universities (No. 2020CDJ-LHZZ-011) and Chongqing Entrepreneurship and Innovation Program for the Returned Overseas Chinese Scholars (No. cx2019002). The authors would like to thank the Analytical and Testing Center of Chongqing University for the assistance with the sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zhou or Xu Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Yang, LZ., Zhou, Y. et al. Thermoelectric performance of (AgBiTe2)1-x(SnTe)x with stable cubic enabled by enhanced configurational entropy. Rare Met. 41, 4149–4155 (2022). https://doi.org/10.1007/s12598-022-02099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02099-7

Keywords

Navigation