Skip to main content
Log in

Revealing layer-dependent interlayer interactions by doping effect on graphene in WSe2/N-layer graphene heterostructures using Raman and photoluminescence spectroscopy

  • LETTER
  • Published:
Rare Metals Aims and scope Submit manuscript

Assembling layered materials in the form of vertically stacked heterostructures has enabled the combination of various properties from different two-dimensional (2D) materials, which is receiving a great deal of attention for investigating novel physical phenomena and emerging a facile way to fabricate promising highly tailored architectures. In this study, we employ Raman and photoluminescence (PL) spectroscopy to systematically investigate the influence of thickness on interlayer interaction in WSe2/n-layer graphene (WSe2/nL-Gr, n = 1, 2, 3, 4) heterostructures. It is found that the charge carrier concentration of graphene can be significantly affected by distinct interlayer coupling originated from heterostructure interface. The observed varying doping levels in graphene as layer number (nL) increases from 1L to 4L are quantitatively studied by considering the screening effects and band structure. On the other hand, the corresponding change of electronic band structure of WSe2 is further discussed after introducing graphene, PL intensity in WSe2/N-Gr heterostructures is quenched by more than 2 orders of magnitude which suggests ultra-efficient interlayer charge transfer occurs. Meanwhile, the various screening effects from graphene with different nL can account for the evolution of band structure of WSe2, which is in good agreement with the layer-dependent doping effect in graphene. This work offers a comprehensive investigation on nL dependence of interface coupling in WSe2/N-Gr heterostructures. Our observations also demonstrate that the physical properties of each component in heterostructures can be effectively tuned by the other one, which will drive the development of heterostructures in electronic and optoelectronic devices.

摘要

将不同性质的二维材料组装成垂直异质结构已经成为一种有效的研究新颖物理现象和制备可控结构的简单易行方法而被广泛关注。本文通过拉曼和光致发光光谱系统研究了石墨烯层数 (1至4层) 对二硒化钨/石墨烯异质结层间相互作用的影响, 揭示了不同层数石墨烯由于介电屏蔽效应和能带结构引起的不同层间相互作用而导致载流子浓度不同。另一方面研究了不同层数石墨烯对二硒化钨电子能带结构的影响, 异质结区域二硒化钨光致发光强度淬灭两个数量级, 表明石墨烯和二硒化钨之间高效率的电荷转移过程, 同时二硒化钨不同的能带结构改变源自于石墨烯层数依赖的介电屏蔽效应, 这与石墨烯中层数依赖的掺杂效应一致。本工作对二硒化钨/石墨烯中石墨烯层数依赖的不同层间耦合做了系统研究, 阐述了异质结构中材料层数对异质结特性的有效调控, 推动了异质结在电子器件和光电器件中的应用和发展。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197.

    Article  CAS  Google Scholar 

  2. Zhu SJ, Song YB, Wang J, Wan H, Zhang Y, Ning Y, Yang B. Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today. 2017;13:10.

    Article  CAS  Google Scholar 

  3. Cho DH, Wang L, Kim JS, Lee GH, Kim ES, Lee S, Lee SY, Hone J, Lee C. Effect of surface morphology on friction of graphene on various substrates. Nanoscale. 2013;5(7):3063.

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  5. Hao M, Zeng W, Li YQ, Wang ZC. Three-dimensional graphene and its composite for gas sensors. Rare Met. 2021;40(6):1494.

    Article  CAS  Google Scholar 

  6. Liang L, Meunier V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale. 2014;6(10):5394.

    Article  CAS  Google Scholar 

  7. Park JW, So HS, Kim S, Choi SH, Lee H, Lee J, Lee C, Kim Y. Optical properties of large-area ultrathin MoS2 films: evolution from a single layer to multilayers. J Appl Phys. 2014;116(18): 183509.

    Article  Google Scholar 

  8. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419.

    Article  CAS  Google Scholar 

  9. Zhan L, Li CM, Gao PF, Huang CZ. AuNPs/graphene hybrids-based enzyme-free plasmonic immunoassay for respiratory syncytial virus detection. Journal of Analysis and Testing. 2021;5(3):203.

    Article  Google Scholar 

  10. Liu JY, Zhang X, Lu G. Excitonic effect drives ultrafast dynamics in van der Waals heterostructures. Nano Lett. 2020;20(6):4631.

    Article  CAS  Google Scholar 

  11. Jin CH, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotechnol. 2018;13(11):994.

    Article  CAS  Google Scholar 

  12. Wong J, Jariwala D, Tagliabue G, Tat K, Davoyan AR, Sherrott MC, Atwater HA. High photovoltaic quantum efficiency in ultrathin van der Waals heterostructures. ACS Nano. 2017;11(7):7230.

    Article  CAS  Google Scholar 

  13. Geng HJ, Yuan D, Yang Z, Tang ZJ, Zhang XW, Yang K, Su Y. Graphene van der Waals heterostructures for high-performance photodetectors. J Mater Chem C. 2019;7(36):11056.

    Article  CAS  Google Scholar 

  14. Guo ZL, Miao NH, Zhou J, Sa BS, Sun Z. Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J Mater Chem C. 2017;5(4):978.

    Article  CAS  Google Scholar 

  15. Ahmed S, Ding X, Murmu PP, Bao N, Liu R, Kennedy J, Wang L, Ding J, Wu T, Vinu A. High coercivity and magnetization in WSe2 by codoping Co and Nb. Small. 2020;16(12):1903173.

    Article  CAS  Google Scholar 

  16. Karni O, Barré E, Lau SC, Gillen R, Ma EY, Kim B, Watanabe K, Taniguchi T, Maultzsch J, Barmak K. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys Rev Lett. 2019;123(24): 247402.

    Article  CAS  Google Scholar 

  17. Okada M, Kutana A, Kureishi Y, Kobayashi Y, Saito Y, Saito T, Watanabe K, Taniguchi T, Gupta S, Miyata Y. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano. 2018;12(3):2498.

    Article  CAS  Google Scholar 

  18. Xing X, Zhao L, Zhang W, Wang Z, Su H, Chen H, Ma G, Dai J, Zhang W. Influence of a substrate on ultrafast interfacial charge transfer and dynamical interlayer excitons in monolayer WSe2/graphene heterostructures. Nanoscale. 2020;12(4):2498.

    Article  CAS  Google Scholar 

  19. Nayak PK, Horbatenko Y, Ahn S, Kim G, Lee JU, Ma KY, Jang AR, Lim H, Kim D, Ryu S. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano. 2017;11(4):4041.

    Article  CAS  Google Scholar 

  20. Yang B, Molina E, Kim J, Barroso D, Lohmann M, Liu Y, Xu Y, Wu R, Bartels L, Watanabe K. Effect of distance on photoluminescence quenching and proximity-induced spin–orbit coupling in graphene/WSe2 heterostructures. Nano Lett. 2018;18(6):3580.

    Article  CAS  Google Scholar 

  21. Andersen K, Latini S, Thygesen KS. Dielectric genome of van der Waals heterostructures. Nano Lett. 2015;15(7):4616.

    Article  CAS  Google Scholar 

  22. Gao S, Yang L, Spataru CD. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017;17(12):7809.

    Article  CAS  Google Scholar 

  23. Bing D, Wang YY, Bai J, Du RX, Wu GQ, Liu LY. Optical contrast for identifying the thickness of two-dimensional materials. Opt Commun. 2018;406:128.

    Article  CAS  Google Scholar 

  24. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007;7(2):238.

    Article  CAS  Google Scholar 

  25. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18): 187401.

    Article  CAS  Google Scholar 

  26. Ni Z, Wang Y, Yu T, Shen Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1(4):273.

    Article  CAS  Google Scholar 

  27. Deshpande MP, Solanki GK, Agarwal MK. Optical band gap in tungsten diselenide single crystals intercalated by indium. Mater Lett. 2000;43(1–2):66.

    Article  CAS  Google Scholar 

  28. Froehlicher G, Lorchat E, Berciaud S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Phys Rev X. 2018;8(1): 011007.

    CAS  Google Scholar 

  29. Alyobi MM, Barnett CJ, Cobley RJ. Effects of thermal annealing on the properties of mechanically exfoliated suspended and on-substrate few-layer graphene. Curr Comput-Aided Drug Des. 2017;7(11):349.

    Google Scholar 

  30. Chakraborty B, Bera A, Muthu D, Bhowmick S, Waghmare UV, Sood A. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys Rev B. 2012;85(16): 161403.

    Article  Google Scholar 

  31. Hui YY, Liu X, Jie W, Chan NY, Hao J, Hsu YT, Li LJ, Guo W, Lau SP. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano. 2013;7(8):7126.

    Article  CAS  Google Scholar 

  32. Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater Interfaces. 2013;25(25):3456.

    Article  CAS  Google Scholar 

  33. Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014;14(9):5097.

    Article  CAS  Google Scholar 

  34. Padilha J, Fazzio A, da Silva AJ. van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett. 2015;114(6): 066803.

    Article  CAS  Google Scholar 

  35. Ju L, Velasco J, Huang E, Kahn S, Nosiglia C, Tsai HZ, Yang W, Taniguchi T, Watanabe K, Zhang Y. Photoinduced doping in heterostructures of graphene and boron nitride. Nat Nanotechnol. 2014;9(5):348.

    Article  CAS  Google Scholar 

  36. Rao R, Islam AE, Singh S, Berry R, Kawakami RK, Maruyama B, Katoch J. Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS2 heterostructures. Phys Rev B. 2019;99(19): 195401.

    Article  CAS  Google Scholar 

  37. Wang H, Wang Y, Cao X, Feng M, Lan G. Vibrational properties of graphene and graphene layers. J Raman Spectrosc. 2009;40(12):1791.

    Article  CAS  Google Scholar 

  38. Guinea F. Charge distribution and screening in layered graphene systems. Phys Rev B. 2007;75(23): 235433.

    Article  Google Scholar 

  39. Das A, Chakraborty B, Piscanec S, Pisana S, Sood A, Ferrari A. Phonon renormalization in doped bilayer graphene. Phys Rev B. 2009;79(15): 155417.

    Article  Google Scholar 

  40. Raja A, Chaves A, Yu J, Arefe G, Hill HM, Rigosi AF, Berkelbach TC, Nagler P, Schüller C, Korn T. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat Commun. 2017;8(1):1.

    Article  Google Scholar 

  41. Azizi A, Eichfeld S, Geschwind G, Zhang K, Jiang B, Mukherjee D, Hossain L, Piasecki AF, Kabius B, Robinson JA. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano. 2015;9(5):4882.

    Article  CAS  Google Scholar 

  42. Lin YC, Chang CYS, Ghosh RK, Li J, Zhu H, Addou R, Diaconescu B, Ohta T, Peng X, Lu N. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 2014;14(12):6936.

    Article  CAS  Google Scholar 

  43. Zhao M, Song P, Teng J. Electrically and optically tunable responses in graphene/transition-metal-dichalcogenide heterostructures. ACS Appl Mater Interfaces. 2018;10(50):44102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 61774040 and 61774042), Shanghai Municipal Natural Science Foundation (No. 20ZR1403200), Shanghai Municipal Science and Technology Commission (No. 18JC1410300), Fudan University-CIOMP Joint Fund (No. FC2018-002), the National Young 1000 Talent Plan of China, “First-Class Construction” Project of Fudan University (No. XM03170477) and the State Key Laboratory of ASIC & System, Fudan University (No. 2018MS001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Jun Qiu or Chun-Xiao Cong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, YB., Yue, XF., Chen, JJ. et al. Revealing layer-dependent interlayer interactions by doping effect on graphene in WSe2/N-layer graphene heterostructures using Raman and photoluminescence spectroscopy. Rare Met. 41, 3646–3653 (2022). https://doi.org/10.1007/s12598-022-02053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02053-7

Navigation