Skip to main content

Advertisement

Log in

Ferrite-based composites and morphology-controlled absorbers

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The exploration of lightweight and efficient electromagnetic wave (EMW) absorption materials is a crucial focus topic because the human body and precision instruments are exposed to the increasingly serious electromagnetic pollution. Ferrite, as the first type of EMW absorption material, is still the indelible superstar in the EMW absorption field due to its unique double loss mechanism, controllable morphology and high permeability. This review briefly introduces the EMW absorption and attenuation mechanism of ferrite-based composite absorbers, including dielectric loss dominated by charge transfer and polarization relaxation, and magnetic loss consisted of eddy current and resonance. Moreover, we comb the advances in synthesis of ferrite materials. In particular, this paper summarizes the advantages and defects of pure ferrite as EMW absorption material. And the approach to tackling the imbalance of impedance matching and high-density in ferrite is also reviewed, including ion substitution, design of micro-morphology and doping with dielectric loss materials.

Graphical Abstract

摘要

人体和精密仪器长期暴露在日益增长的电磁污染中受到了严重威胁, 因此探索轻质高效的 电磁波吸收材料成为了当代社会研究的热点课题。铁氧体作为最早被研究的一类电磁波吸收 材料, 由于其独特的双损耗机制, 可控的形貌以及高磁导率, 成为了电磁波吸收领域不可泯 灭的巨星。本文简要介绍了铁氧体基复合吸波材料的电磁波吸收和衰减机理, 包括以传导损 耗和极化弛豫为主的介电损耗, 以及由涡流和共振组成的磁损耗。此外, 我们还梳理了铁氧 体材料合成方面的进展, 总结了纯铁氧体作为电磁波吸收材料的优势及缺陷。特别地, 本文 综述了铁氧体中高密度和阻抗匹配失衡的解决方法, 其中包括离子替代、微观形貌设计和介 质损耗材料掺杂等。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020, Elsevier; dipole polarization and interface polarization from Ref. [29]. Copyright 2020, Elsevier; eddy current loss and natural resonance from Ref. [30]. Copyright 2021, Elsevier. Synthesis techniques of ferrite-based EMWA materials: oxide method from Ref. [31]. Copyright 2021, Elsevier; chemistry co-precipitation from Ref. [32]. Copyright 2021, Elsevier; hydrothermal from Ref. [29]. Copyright 2020, Elsevier. Some representative ferrite-based EMW absorbers in this review: Ni0.5Cr0.5Fe2O4 from Refs. [33]. Copyright 2020, Elsevier; Ni0.5Zn0.5Nd0.02Fe1.98O4 from Refs. [34]. Copyright 2020, Elsevier; SrFe12O19 hollow fiber from Refs. [35]. Copyright 2018, Springer; Fe3O4 porous flake from Refs. [36]. Copyright 2018, Iop Publishing Ltd; Fe3O4/PEDOT from Ref. [37]. Copyright 2011, American Chemical Society; C/CoFe2O4 from Ref. [38]. Copyright 2021, Elsevier; Fe3O4/MXene from Ref. [39]. Copyright 2021, Elsevier; TiO2/Ti3CTx/Fe3O4-x from Ref. [40]. Copyright 2018, Elsevier

Fig. 2

Reproduced with permission from a Ref. [55]. Copyright 2021, Elsevier; b Ref. [56]. Copyright 2016, Journal Mater Sci Technol; c Ref. [57]. Copyright 2022, Elsevier; d Ref. [58]. Copyright 2018, Tsinghua Univ Press

Fig. 3

Copyright 2021, Elsevier; chemistry co-precipitation from Ref. [32]. Copyright 2021, Elsevier; hydrothermal from Ref. [29] Copyright 2020, Elsevier

Fig. 4

Reproduced with permission from Ref. [34]. Copyright 2020, Elsevier. j high resolution transmission electron microscope (HR-TEM) image and k electromagnetic absorption performance of Ni0.5Cr0.5Fe2O4. Reproduced with permission from Ref. [33]. Copyright 2020, Elsevier

Fig. 5

Copyright 2010, Elsevier; b Ni0.5Zn0.5Fe2O4 fiber from Ref. [118]. Copyright 2018, Springer; c Fe3O4 flake from Ref. [119]. Copyright 2021, Elsevier; d Fe3O4 hollow sphere from Ref. [120]. Copyright 2019, MDPI; e SrFe12O19 hollow fiber from Ref. [35]. Copyright 2016, Elsevier; f Fe3O4 porous sheet from Ref. [36]. Copyright 2018, Iop Publishing Ltd

Fig. 6

Reproduced with permission from Ref. [129]. Copyright 2018, Elsevier. f Reflection loss of Fe3O4@PEDOT. TEM images of Fe3O4@PEDOT prepared with different (EDOT)/(Fe3O4) ratios: g 10:1, h 20:1, and i 50:1. j Attenuation mechanism of Fe3O4@PEDOT, where PVA is polyvinylalcohol, p-TSA is p-toluenesulfonic, EDOT is 3,4-ethoxylenedioxythiophene, APS is ammonium persulfate, PEDOT is poly(3,4-ethylenedioxythiophene). Reproduced with permission from Ref. [37]. Copyright 2011, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [130]. Copyright 2018, American Chemical Society

Fig. 8

Copyright 2017, American Chemical Society; f SAED pattern of LZC@MWCNT, g TEM images of LZC@MWCNT, h reflection loss of LZC@MWCNT from Refs. [132]. Copyright 2017, American Chemical Society

Fig. 9

Copyright 2021, Elsevier

Fig. 10

Reproduced with permission from Ref. [39]. Copyright 2021, Elsevier

Fig. 11

Reproduced with permission from Ref. [40]. Copyright 2018, Elsevier

Fig. 12

Reproduced with permission from Ref. [134]. Copyright 2021, Elsevier

Fig. 13

Reproduced with permission from Ref. [135]. Copyright 2020, Elsevier

Similar content being viewed by others

References

  1. Chang Q, Liang HS, Shi B, Li XL, Zhang YT, Zhang LM, Wu HJ. Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J Colloid Interf Sci. 2021;588:336.

    Article  CAS  Google Scholar 

  2. Chen G, Zhang LM, Fan XM. Interfacial and defect polarization in MXene-like laminated spinel for electromagnetic wave absorption application. J Colloid Interf Sci. 2021;588:813.

    Article  CAS  Google Scholar 

  3. Gao ZG, Song YH, Zhang SJ, Lan D, Zhao ZH, Wang ZJ, Zang DY, Wu GL, Wu HJ. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J Colloid Interf Sci. 2021;600:288.

    Article  CAS  Google Scholar 

  4. Lan D, Gao ZG, Zhao ZH, Wu GL, Kou KC, Wu HJ. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem Eng J. 2021;408: 127313.

    Article  CAS  Google Scholar 

  5. Liu JL, Liang HS, Wu HJ. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos Part A-Appl S. 2020;130: 105760.

    Article  CAS  Google Scholar 

  6. Dalal J, Gupta A, Lather S, Singh K, Dhawan SK, Ohlan A. Poly (3, 4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding. J Alloy Compd. 2016;682:52.

    Article  CAS  Google Scholar 

  7. Singh K, Ohlan A, Viet HP, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kumar M, Dhawan SK, Kong BS, Chung JS. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale. 2013;5:2411.

    Article  CAS  Google Scholar 

  8. Ohlan A, Singh K, Chandra A, Dhawan SK. Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites. Acs App Mater Inter. 2010;2:927.

    Article  CAS  Google Scholar 

  9. Dalal J, Malik S, Dahiya S, Punia R, Singh K, Maan AS, Dhawan SK, Ohlan A. One pot synthesis and electromagnetic interference shielding behavior of reduced graphene oxide nanocomposites decorated with Ni05Co0.5Fe2O4 nanoparticles. J Alloy Compd. 2021;887:161472.

    Article  CAS  Google Scholar 

  10. Dalal J, Lather S, Gupta A, Tripathi R, Maan AS, Singh K, Ohlan A. Reduced graphene oxide functionalized strontium ferrite in poly(3,4-ethylenedioxythiophene) conducting network: a high-performance EMI shielding material. Adv Mater Technol-US. 2019;4:1900023.

    Article  CAS  Google Scholar 

  11. Dalal J, Lather S, Gupta A, Dahiya S, Maan AS, Singh K, Dhawan SK, Ohlan A. EMI shielding properties of laminated graphene and PbTiO3 reinforced poly (3,4-ethylenedioxythiophene) nanocomposites. Compos Sci Technol. 2018;165:222.

    Article  CAS  Google Scholar 

  12. Mu Y, Zhang LM, Liu H, Wu HJ. Regulating pH value synthesis of NiCo2O4 with excellent electromagnetic wave absorbing performance. J Mater Sci-Mater El. 2021;32:26059.

    Article  CAS  Google Scholar 

  13. Chang Q, Liang HS, Shi B, Wu HJ. Sodium oxalate-induced hydrothermal synthesis of wood-texture-column-like NiCo2O4 with broad bandwidth electromagnetic wave absorption performance. J Colloid Interf Sci. 2021;600:49.

    Article  CAS  Google Scholar 

  14. Lan D, Qin M, Liu JL, Zhang Y, Wu HJ. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem Eng J. 2020;382:122797.

    Article  CAS  Google Scholar 

  15. Liu JL, Zhang LM, Zang DY, Wu HJ. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv Funct Mater. 2021;31:2105018.

    Article  CAS  Google Scholar 

  16. Qin M, Lan D, Liu JL, Zhang LM, Xing H, Xu TT, Wu HJ. Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem Rec. 2020;20(2):102.

    Article  CAS  Google Scholar 

  17. Zhang DQ, Liu TT, Zhang M, Zhang HB, Yang XY, Cheng JY, Shu JC, Li L, Cao MS. Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology. 2020;31(32):325703.

    Article  CAS  Google Scholar 

  18. Liu JL, Zhao ZH, Zhang LM. Toward the application of electromagnetic wave absorption by two-dimension materials. J Mater Sci-Mater El. 2020;32:25562.

    Article  Google Scholar 

  19. Sista KS, Dwarapudi S, Kumar D, Sinha GR, Moon AP. Carbonyl iron powders as absorption material for microwave interference shielding: a review. J Alloy Compd. 2021;853:157251.

    Article  CAS  Google Scholar 

  20. Qi YL, Yin PF, Zhang LM, Li N. Research progress of ferrite microwave absorbing composites. Aerosp Mater Technol. 2019;49(3):9.

    Google Scholar 

  21. Yin PF, Zhang LM, Feng X, Wang J, Dai JW, Tang YT. Recent progress in ferrite microwave absorbing composites. Integr Ferroelectr. 2020;211(1):82.

    Article  CAS  Google Scholar 

  22. Chen X, Liu XX, Liu Y, Guo L, Zhang HP. Effects of calcination temperature and citric acid content on the structure and microwave absorbing properties of nickel ferrite. J Chem Eng Des Commun. 2013;44(3):16.

    CAS  Google Scholar 

  23. Feng Y, Fu GM. Research status of ferrite microwave absorbing materials. Def Technol Rev. 2015;36(4):27.

    Google Scholar 

  24. Wang GD. Research progress of ferrite microwave absorbing materials. TechnologyWind. 2019;29:166.

    Google Scholar 

  25. Zhao J, Yao YL, Yang XH, Cai CP. Research progress of ferrite and its composite microwave absorbing materials. J Compos Mater. 2020;37(11):2684.

    Google Scholar 

  26. Zhao XM, Lu YW. Recent research progress and development trend of microwave absorbing materials. J Chengdu Textile College. 2016;33(03):120.

    Google Scholar 

  27. Qin M, Shuai Q, Wu GL, Zheng BH, Wang ZD, Wu HJ. Zinc ferrite composite material with controllable morphology and its applications. Mat Sci Eng B-Adv. 2017;224:125.

    Article  CAS  Google Scholar 

  28. Ma JR, Wang XX, Cao WQ, Han C, Yang HJ, Yuan J, Cao MS. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem Eng J. 2018;339:487.

    Article  CAS  Google Scholar 

  29. Wu HJ, Liu JL, Liang HS, Zang DY. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem Eng J. 2020;393:124743.

    Article  CAS  Google Scholar 

  30. Shang Q, Feng HX, Liu JP, Lian Q, Feng ZY, Chen NL, Qiu JH, Wu HJ. Constructing and optimizing hollow ZnxFe3-xO4@polyaniline composites as high-performance microwave absorbers. J Colloid Interf Sci. 2021;584:80.

    Article  CAS  Google Scholar 

  31. Qiu XJ, Ding DH, Yang SJ, Wang G, Chen RZ, Dzakpasu M, Jin PK, Wang XC. Solid-state synthesis of cobalt ferrite fitted with γ-Fe2O3-containing nanocage for peroxymonosulfate activation and cobalt leaching control. Chem Eng J. 2021;405:126994.

    Article  CAS  Google Scholar 

  32. Liu ZM, Gao ZM, Wu Q. Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chem Eng J. 2021;423:130283.

    Article  CAS  Google Scholar 

  33. Wahaab FA, Adebayo LL. Electromagnetic properties of Cr-substituted nickel ferrite nanoparticles and their microwave absorption performance. Ceram Int. 2020;46(18):28506.

    Article  CAS  Google Scholar 

  34. Qian K, Yao ZJ, Lin HY, Zhou JT, Haidry AA, Qi TBH, Chen WJ, Guo XL. The influence of Nd substitution in Ni-Zn ferrites for the improved microwave absorption properties. Ceram Int. 2020;46(1):227.

    Article  CAS  Google Scholar 

  35. Wang ZH, Zhao L, Wang PH, Guo L, Yu JH. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning. J Alloy and Compd. 2016;687:541.

    Article  CAS  Google Scholar 

  36. Zhao HQ, Cheng Y, Liu W, Yang ZH, Zhang BS, Ji GB, Du YW. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology. 2018;29(29):295603.

    Article  Google Scholar 

  37. Zhou WC, Hu XJ, Bai XX, Zhou SY, Sun CH, Yan J, Chen P. Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. Acs Appl Mater Inter. 2011;3(10):3839.

    Article  CAS  Google Scholar 

  38. Zhang M, Chen L, Yu Y, Meng XF, Xiang J. Cabon nanofiber supported cobalt ferrite composites with tunable microwave absorption properties. Ceram Int. 2021;47(7):9392.

    Article  CAS  Google Scholar 

  39. Jin L, Wang JQ, Wu F, Yin YN, Zhang BL. MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: optimum composition and performance evaluation. Carbon. 2021;182:770.

    Article  CAS  Google Scholar 

  40. Liu PJ, Yao ZJ, Ng VMH, Zhou LT, Kong LB, Yue K. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites Part A-Appl S. 2018;115:371.

    Article  CAS  Google Scholar 

  41. Wang L, Du Z, Xiang LX, Hou D, Zhu SH, Zhu JF, Mai YY, Che RC. The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. Carbon. 2021;179:435.

    Article  CAS  Google Scholar 

  42. Wang BL, Wu Q, Fu YG, Liu T. A review on carbon/magnetic metal composites for microwave absorption. J Mater Sci Technol. 2021;86:91.

    Article  CAS  Google Scholar 

  43. Qiu Y, Yang HB, Cheng Y, Lin Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos Part A-Appl S. 2022;154:106772.

    Article  CAS  Google Scholar 

  44. Zhang DQ, Liu TT, Zhang M, Zhang HB, Yang XY, Cheng JY, Shu JC, Li L, Cao MS. Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology. 2020;31:325703.

    Article  CAS  Google Scholar 

  45. Chai JX, Cheng JY, Zhang DQ, Xiong YF, Yang XY, Ba XW, Ullah S, Zheng GP, Yan M, Cao MS. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J Alloy Compd. 2020;829:154531.

    Article  CAS  Google Scholar 

  46. Han YH, Yuan J, Zhu YH, Wang QQ, Li L, Cao MS. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J Colloid Interf Sci. 2022;609:746.

    Article  CAS  Google Scholar 

  47. Chu WS, Wang KF, Li H, Chen YJ, Liu HZ. Harvesting yolk-shell nanocomposites from Fe-MIL-101 self-template in NaCl/KCl molten salt environment for high-performance microwave absorber. Chem Eng J. 2022;430:133112.

    Article  CAS  Google Scholar 

  48. Lou ZC, Wang QY, Sun W, Liu J, Yan H, Han H, Bian HY, Li YJ. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem Eng J. 2022;430:133178.

    Article  CAS  Google Scholar 

  49. Jin C, Wu ZC, Yang CD, Wang LY, Zhang RX, Xu HL, Che RC. Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. Chem Eng J. 2021;17:133640.

    Google Scholar 

  50. Kang S, Qiao SY, Cao YT, Hu ZM, Yu JR, Wang Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem Eng J. 2021;16:133619.

    Google Scholar 

  51. Zhang F, Yin SY, Chen YF, Zheng Q, Wang LJ, Jiang W. Ligand-directed construction of CNTs-decorated metal carbide/carbon composites for ultra-strong and broad electromagnetic wave absorption. Chem Eng J. 2021;14:133586.

    Google Scholar 

  52. Li B, Wang FL, Wang KJ, Qiao J, Xu DM, Yang YF, Zhang X, Lyu LF, Liu W, Liu JR. Metal sulfides based composites as promising efficient microwave absorption materials: a review. J Mater Sci Technol. 2022;104:244.

    Article  Google Scholar 

  53. Li J, Zhou D, Wang PJ, Du C, Liu WF, Su JZ, Pang LX, Cao MS, Kong LB. Recent progress in two-dimensional materials for microwave absorption applications. Chem Eng J. 2021;425:131558.

    Article  CAS  Google Scholar 

  54. Liu Y, Wang QM, Fang QY, Liu WD, Meng F. Facile synthesis of CoFe2O4/reduced graphene oxide nanocomposites with adjusting porous morphology for efficient microwave absorption. J Magn Magn Mater. 2022;546:168903.

    Article  CAS  Google Scholar 

  55. Ma WJ, He P, Wang TY, Xu J, Liu XY, Zhuang QX, Cui ZK, Lin SL. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem Eng J. 2021;420:129875.

    Article  CAS  Google Scholar 

  56. Lv HP, Wu C, Qin FX, Peng HX, Yan M. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption. J Mater Sci Technol. 2021;90:1.

    Article  Google Scholar 

  57. Xu RX, Xu DW, Zeng Z, Liu D. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem Eng J. 2022;427:130796.

    Article  CAS  Google Scholar 

  58. Qiao MT, Lei XF, Ma Y, Tian LD, He XW, Su KH, Zhang QY. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018;11:1500.

    Article  CAS  Google Scholar 

  59. Sista KS, Dwarapudi S, Kumar D, Sinha GR, Moon AP. Carbonyl iron powders as absorption material for microwave interference shielding: a review. J Alloy Compd. 2021;853:157251.

    Article  CAS  Google Scholar 

  60. Yang WT, Qi XM, Sun JW, Yu LM, Dong YB, Fu YQ, Zhu YF. A deformable honeycomb sandwich composite felt with excellent microwave absorption performance at a low absorbent loading content. Compos Struct. 2022;283:115140.

    Article  CAS  Google Scholar 

  61. Xu ZG, Du JH, Wang J, Chen ZH, Li WJ, Wang CB, Shen Q. A comparative study on the microwave absorption properties of core-single-shell, core-double-shell and yolk-shell CIP/ceramic composite microparticles. J Magn Magn Mater. 2022;547:168959.

    Article  CAS  Google Scholar 

  62. Zhi DD, Li T, Li JZ, Ren HS, Meng FB. A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos Part B- Eng. 2021;211:108642.

    Article  CAS  Google Scholar 

  63. Gan FY, Yao QR, Cheng LC, Zhang L, Liang QH, Guo JX, Wang M, Zhou HY, Zhong Y. Fabrication of BaFe12O19/CeO2 composite for highly efficient microwave absorption. J Alloy Compd. 2022;897:162964.

    Article  CAS  Google Scholar 

  64. Sun Y, Zhou B, Wang HP, Deng X, Feng J, He M, Li XH, Zhu XH, Peng Y, Zheng XL. Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core-shell FeCo@Fe3O4 nanoparticle for improved microwave absorption. Carbon. 2022;186:333.

    Article  CAS  Google Scholar 

  65. Wang BL, Fu YG, Li J, Liu T. Yolk-shelled Co@SiO2@mesoporous carbon microspheres: construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J Colloid Interf Sci. 2022;607:1540.

    Article  CAS  Google Scholar 

  66. Zhao ZH, Jia ZR, Wu HJ, Gao ZG, Zhang Y, Kou KC, Huang ZY, Feng AL, Wu GL. Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification. Eur Phys J-Appl Phys. 2019;87(2):20901.

    Article  CAS  Google Scholar 

  67. Cobos MA, De LPP, Llorente I, Garcia EA, Hernando A, Jimenez JA. Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite. J Alloy Compd. 2020;849:156353.

    Article  CAS  Google Scholar 

  68. Li XQ, Meng MN, Wang Q, Zhu YY, Feng JH, Hu XL. Research progress on preparation methods of ferrite microwave absorbing materials. J Wuhan Inst Technol. 2016;38(02):125.

    Google Scholar 

  69. Chen N, Wang HB, Huo JC, Zhu SZ, Liu SX. Research progress in preparation of ferrite microwave absorbing materials. New Chem Mater. 2009;37(11):8.

    Google Scholar 

  70. Zheng SF, Xiong GX, Huang HQ, Luo LJ, Deng M. Study on the relationship between preparation, morphology and properties of ferrite. Mater Rep. 2009;23(23):26.

    CAS  Google Scholar 

  71. Wang CP, Fang QQ, Li MQ, Liu YM. Study on microwave absorbing properties of LiFexZn1-2xFe2O4 ferrite. J Anhui Univ. 2007;04:51.

    CAS  Google Scholar 

  72. Zhao DL, Lv Q, Shen ZM. Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J Alloy and Compd. 2009;480(2):634.

    Article  CAS  Google Scholar 

  73. Zhu XS, Cao CX, Su SB, Xia AL, Zhang HY, Li HL, Liu ZY, Jin CQ. A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: structural and magnetic properties. Ceram Int. 2021;47(11):15173.

    Article  CAS  Google Scholar 

  74. Wang SC. Research progress in preparation of ferrite microwave absorbing materials. Heilongjiang Sci tech inform. 2015;15:62.

    Google Scholar 

  75. Huang XG, Zhang J, Wang W, Sang TY, Song B, Zhu HL, Rao WF, Wong CP. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method. J Magn Magn Mater. 2016;405:36.

    Article  CAS  Google Scholar 

  76. Liu HY, Li YS. Synthesis and microwave absorbing properties of Cobalt ferrite. 2nd International Conference on New Material and Chemical Industry (NMCI). Sanya, Hainan, China, 2017;399.

  77. Mehdipour M, Shokrollahi H. Comparison of microwave absorption properties of SrFe12O19, SrFe12O19/NiFe2O4, and NiFe2O4 particles. J Appl Phys. 2013;114(4):043906.

    Article  Google Scholar 

  78. Fannin PC, Marin CN, Malaescu I, Stefu N, Vlazan P, Nivaconi S, Sfirloaga P, Popescu P, Couper C. Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different thermal treatments. Mater Design. 2011;32(3):1600.

    Article  CAS  Google Scholar 

  79. Feitosa DCTA, Nobre FX, De LBA, Ghosh A, De ALESA, Oliveira DSFR, Rita DMCSM, Elias DMJM. Investigation of optical, structural, and antifungal properties of lindgrenite obtained by conventional coprecipitation and ultrasound-assisted coprecipitation methods. J Solid State Chem. 2021;295:121957.

    Article  Google Scholar 

  80. Rangel WM, Boca SRAA, Riella HG. A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J Mater Res Technol. 2020;9(1):994.

    Article  CAS  Google Scholar 

  81. Yalcin O, Bayrakdar H, Ozum S. Spin-flop transition, magnetic and microwave absorption properties of alpha-Fe2O4 spinel type ferrite nanoparticles. J Magn Magn Mater. 2013;343:157.

    Article  CAS  Google Scholar 

  82. Ma ZJ, Wang JC, Zhang Q, Su WG. Effect of Ni2+ content on electromagnetic loss characteristics of nano Ni-Zn ferrite. J Synthet Cryst. 2016;45(03):789.

    CAS  Google Scholar 

  83. Yuan Y, Wei SC, Liang Y, Wang B, Wang YJ. Effect of solvothermal reaction-time on microstructure and microwave absorption properties of cobalt ferrite. Materials. 2020;13(23):331.

    Article  Google Scholar 

  84. Kaman O, Kubániová D, Knížek K. Structure and magnetic state of hydrothermally prepared Mn-Zn ferrite nanoparticles. J Alloy and Compd. 2021;888:161471.

    Article  CAS  Google Scholar 

  85. Kurian J, Lahiri BB, Mathew MJ, Philip J. High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. J Magn Magn Mater. 2021;538:168233.

    Article  CAS  Google Scholar 

  86. Majid F, Rauf J, Ata S, Bibi L, Malik A, Lbrahim SM, Ali A, Lqbal M. Synthesis and characterization of NiFe2O4 ferrite: sol-gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics. Mater Chem and Phys. 2021;258:123888.

    Article  CAS  Google Scholar 

  87. Shetty K, Nagaswarupa HP, Rangappa D, Anantharaju KS, Surendra BS, Kumar A. Comparison study of solgel and combustion method for synthesis nano spinel MgFe2O4 and its influence on electrochemical activity. Materialstoday Proceedings. 2018;5:22362.

    Article  CAS  Google Scholar 

  88. Mu GH, Chen N, Pan XF, Shen HG, Gu MY. Preparation and microwave absorption properties of barium ferrite nanorods. Mater Lett. 2008;62(6–7):840.

    Article  CAS  Google Scholar 

  89. Jin Q, Yang XF, Chen ZP, Liu B, Li QL. Preparation and microwave absorbing properties of W-type ferrite BaCoZnFe16O27. J Magn Mater Device. 2014;45(01):14.

    CAS  Google Scholar 

  90. Chen X, Liu XX, Liu Y, Guo L, Zhang HP. Effects of calcination temperature and citric acid content on the structure and microwave absorbing properties of nickel ferrite. J Magn Mater Device. 2013;44(3):16.

    CAS  Google Scholar 

  91. Derakhshani M, Taheri-Nassaj E, Jazirehpour M, Masoudpanah SM. Microwave absorption properties of porous NiZn ferrite powders synthesized by solution combustion method: effect of fuel contents. J Alloy and Compd. 2021;886:161195.

    Article  CAS  Google Scholar 

  92. Li LC, Chen KY, Tong GX, Qian HS, Hao B. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite. J Alloys and Compd. 2013;557:11.

    Article  CAS  Google Scholar 

  93. Li CJ, Wang B, Wang JN. Magnetic and microwave absorbing properties of electrospun Ba1−xLaxFe12O19 nanofibers. J Magn Magn Mater. 2012;324(7):1305.

    Article  CAS  Google Scholar 

  94. Bandgar SB, Vadiyar MM, Suryawanshi UP, Jambhale CL, Kim JH, Kolekar SS. Rotational reflux chemistry approach derived flat holey CuFe2O4 nanosheets for supercapacitors application. Mater Lett. 2020;279:128514.

    Article  CAS  Google Scholar 

  95. Chavan AR, Vinayak V, Rathod SM, Khirade PKP. Diverse physical characteristics of mixed Li-Mg spinel ferrite thin films fabricated by spray pyrolysis technique. Physica B. 2021;615:413075.

    Article  CAS  Google Scholar 

  96. Sarıtaş S, Şakar BC, Kundakci M, Gurbulak B, Yildirim M. Analysis of magnesium ferrite and nickel doped magnesium ferrite thin films grown by spray pyrolysis. Mater Today. 2021;46:6920.

    Google Scholar 

  97. Sutka A, Strikis G, Mezinskis G, Lusis A, Zavickis J, Kleperis J, Jakovleves D. Properties of Ni-Zn ferrite thin films deposited using spray pyrolysis. Thin Solid Films. 2012;526:65.

    Article  CAS  Google Scholar 

  98. Zhang L, Wang Y, Liu B, Han GH, Zhang YB. Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction. Ceram Int. 2021;47(8):10927.

    Article  CAS  Google Scholar 

  99. Lei W, Liu YS, Xu J, Du WL, Si XD, Guo BZ, Gao T, Peng L. Research progress in preparation of Mn-Zn ferrite. J Funct Mater Devices. 2014;20(06):235.

    CAS  Google Scholar 

  100. Pang HF, Duan YP, Huang LX, Song LL, Liu J, Zhang T, Yang X, Liu JY, Ma XR, Di JR, Liu XJ. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos Part B-Eng. 2021;224:109173.

    Article  CAS  Google Scholar 

  101. Houbi A, Aldashevich ZA, Atassi Y, Telmanovna ZB, Saule M, Kubanych K. Microwave absorbing properties of ferrites and their composites: a review. J Magn Magn Mater. 2021;529:167839.

    Article  CAS  Google Scholar 

  102. Xie XB, Wang BL, Wang YK, Ni C, Sun XQ, Du W. Spinel structured MFe2O4 (M = Fe Co, Ni, Mn, Zn) and their composites for microwave absorption: a review. Chem Eng J. 2022;428:131160.

    Article  CAS  Google Scholar 

  103. Dong SH, Lin CC, Meng XF. One-pot synthesis and microwave absorbing properties of ultrathin SrFe12O19 nanosheets. J Alloy and Compd. 2019;783:779.

    Article  CAS  Google Scholar 

  104. Ni SB, Sun XL, Wang XH, Zhou G, Yang F, Wang JM, He D. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater Chem Phys. 2010;124:353.

    Article  CAS  Google Scholar 

  105. Chen BY, Chen D, Kang ZT, Zhang YZ. Preparation and microwave absorption properties of Ni–Co nanoferrites. J Alloy Compd. 2015;618:222.

    Article  CAS  Google Scholar 

  106. Yuan Y, Wei SC, Liang Y, Wang B, Wang YJ. Effect of solvothermal reaction-time on microstructure and microwave absorption properties of cobalt ferrite. Materials. 2020;13(23):5331.

    Article  CAS  Google Scholar 

  107. Aggarwal N, Narang SB. Magnetic characterization of nickel-zinc spinel ferrites along with their microwave characterization in Ku band. J Magn Magn Mater. 2020;513:167052.

    Article  CAS  Google Scholar 

  108. Li J, Gao F, Wang G, Yang Y, Sun YH, Su HK, Han XN, Zhang HW, Li Q. Enhancement of microstructure and magnetic properties of MgCd ferrite via Sm-Ga ions substitution for microwave devices. Mater Res Bull. 2021;142:111414.

    Article  CAS  Google Scholar 

  109. Li J, Yang Y, Wang G, Guo L, Rao YH, Gan GW, Zhang HW. Enhanced structure and microwave magnetic properties of MgZn ferrite by Cd2+ ion substitution for LTCC applications. Ceram Int. 2020;46:6600.

    Article  CAS  Google Scholar 

  110. Guo HS, Li LZ, Wu XH, Zhong ZC, Tao ZX, Wang FH, Wang T. Enhanced of the resonant frequency of NiZnCo ferrites induced by substitution of Fe ions with Gd ions. J Magn Magn Mater. 2021;15:2543.

    Google Scholar 

  111. Kumbhar RN, Shinde TJ, Kamble SA, Mathe VL, Ghodake JS. Influence of rare earth ions (Sm3+, Dy3+) substitution on magnetic and microwave performance of magnesium ferrite. Physica B. 2021;619:413161.

    Article  CAS  Google Scholar 

  112. Mansour SF, AlHazmi F, Alhammad MS, Sadep MS, Abdo MA. Enhancing the magnetization, dielectric loss and photocatalytic activity of Co-Cu ferrite nanoparticles via the substitution of rare earth ions. J Mater Res Technol. 2021;15:2543.

    Article  CAS  Google Scholar 

  113. Sun C, Sun KN, Chui PF. Microwave absorption properties of Ce-substituted M-type barium ferrite. J Magn Magn Mater. 2012;324(5):802.

    Article  CAS  Google Scholar 

  114. Ghasemi A, Sepelak V, Liu X, Morisako A. Microwave absorption properties of Mn-Co-Sn doped barium ferrite nanoparticles. IEEE Trans Magn. 2009;45(6):2456.

    Article  CAS  Google Scholar 

  115. Bu HBTE. Structural Morphology Regulation and Surface Functionalization of Spinel Ferrite. Harbin: Heilongjiang University; 2013.1.

  116. Li M, Zheng SR, Qi SH. Research progress of ferrite with different morphology. Adhesion. 2016;37(9):66.

    Google Scholar 

  117. Ni SB, Sun XL, Wang XH, Zhou G, Yang F, Wang JM, He D. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater Chem Phys. 2010;124(1):353.

    Article  CAS  Google Scholar 

  118. Hou ZR, Xiang J, Zhang XK, Gong L, Mi JL, Shen XQ, Zhang KY. Microwave absorption properties of single- and double-layer absorbers based on electrospun nickel-zinc spinel ferrite and carbon nanofibers. J Mater Sci-Mater El. 2018;29(14):12258.

    Article  CAS  Google Scholar 

  119. Pan JL, Zhang RJ, Ling J, Wang M, Li ZC, Zhen Z, He LM, Zhu HW. Controllable preparation and microwave absorption properties of shape anisotropic Fe3O4 nanobelts. J Materiomics. 2021;7(5):957.

    Article  Google Scholar 

  120. Huang W, Wang YJ, Wei SC, Wang B, Liang Y, Huang YW, Xu BS. Effect of reaction time on microwave absorption properties of Fe3O4 hollow spheres synthesized via ostwald ripening. Materials. 2019;12:1921.

    Article  Google Scholar 

  121. Fang ZG, Wang SP, Kong XK, Liu QC. Synthesis of the morphology-controlled porous Fe3O4 nanorods with enhanced microwave absorption performance. J Mater Sci-Mater El. 2020;31(5):3996.

    Article  CAS  Google Scholar 

  122. Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synthetic Met. 2021;272:116664.

    Article  CAS  Google Scholar 

  123. Zhao R, Zhao GL. Reference Module in Materials Science and Materials Engineering. Beijing: Elsevier; 2021.1.

  124. Chen KY, Li LC, Tong GX, Qiao R, Hao B, Liang XX. Fabrication and absorbing property of microwave absorbers based on BaAl2Fe10O19 and poly(o-toluidine). Synthetic Met. 2011;161(21–22):2192.

    Article  CAS  Google Scholar 

  125. Wen JW, Li XX, Chen G, Wang ZN, Zhou XJ, Wu HJ. Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J Colloid Interf Sci. 2021;594:424.

    Article  CAS  Google Scholar 

  126. Xu SR, Dong PL, Qin M, Liu HL, Long AY, Chen CP, Feng SL, Wu HJ. Core-shell structured Fe2O3/CeO2@MnO2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Microchim Acta. 2021;188(10):337.

    Article  CAS  Google Scholar 

  127. Wang ZD, Cheng YH, Yang MM, Huang JL, Cao DX, Chen SY, Xie Q, Lou WX, Wu HJ. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/polydopamine. Compos Part B-Eng. 2018;140:83.

    Article  CAS  Google Scholar 

  128. Wang ZD, Yang MM, Cheng YH, Liu JY, Xiao B, Chen XY, Huang JL, Xie Q, Wu GL, Wu HJ. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Composites Part A-Appl S. 2019;118:302.

    Article  CAS  Google Scholar 

  129. Ji SN, Li CP, Zhang ZM, Jiang XH, Yu LM. Hollow γ-Fe2O3@Poly(3, 4-ethylenedioxythiophene) versus γ-Fe2O3@SiO2@Poly(3, 4-ethylenedioxythiophene) core-shell structures for highly effective microwave absorption. Synthetic Met. 2018;239:59.

    Article  CAS  Google Scholar 

  130. Liu Y, Chen Z, Zhang Y, Feng R, Chen X, Xiong CX, Dong LJ. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. Acs Appl Mater Inter. 2018;10(16):13860.

    Article  CAS  Google Scholar 

  131. Li N, Huang GW, Li YQ, Xiao HM, Feng QP, Hu N, Fu SY. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. Acs Appl Mater Inter. 2017;9(3):2973.

    Article  CAS  Google Scholar 

  132. Dalal M, Greneche JM, Satpati B, Ghzaiel TB, Mazaleyrat F, Ningthoujam RS, Chakrabarti PK. Microwave absorption and the magnetic hyperthermia applications of Li0.3ZnO3Co0.1Fe2.3O4 nanoparticles in multiwalled carbon nanotube matrix. Acs Appl Mater Inter. 2017;9(46):40831.

    Article  CAS  Google Scholar 

  133. Shan DY, He J, Deng LW, Yan SQ, Luo H, Huang SX, Xu YC. The underlying mechanisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene. Results Phys. 2019;15:102750.

    Article  Google Scholar 

  134. Cui YH, Yang K, Wang JQ, Shah T, Zhang QY, Zhang BL. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon. 2021;172:1.

    Article  CAS  Google Scholar 

  135. Liang HS, Xing H, Qin M, Wu HJ. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos Part A-Appl S. 2020;135:105959.

    Article  CAS  Google Scholar 

  136. Ma YB, Zhou YY, Sun YY, Chen H, Xiong ZY, Li XL, Shen LY, Liu YQ. Tunable magnetic properties of Fe3O4/rGO/PANI nanocomposites for enhancing microwave absorption performance. J Alloy Compd. 2019;796:120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52074227, 51801186 and U1806219) and the Fundamental Research Funds for the Central Universities (No. 310201911cx019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Min Zhang or Hong-Jing Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Ma, ZH., Liang, HS. et al. Ferrite-based composites and morphology-controlled absorbers. Rare Met. 41, 2943–2970 (2022). https://doi.org/10.1007/s12598-022-02045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02045-7

Keywords

Navigation