Skip to main content

Advertisement

Log in

Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the rapid development of wearable electronic devices, modern portable energy sources pay more attention to lightweight, low cost, high flexibility and high efficiency. This paper proposed a flexible single-electrode triboelectric nanogenerator (S-TENG) composed of multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) film. The S-TENG has the advantages of high flexibility, high hydrophobicity, light weight, low cost, and high output efficiency. The peak-to-peak open circuit voltage can reach 435 V and the maximum short-circuit current density is 13 μA·cm−2 under continuous pressing. When the external load is 40 MΩ, the maximum output power density is 3.7 mW·cm−2. The S-TENG can not only harvest the mechanical energy generated by biological movement, but also can be used as a sensor to effectively detect human movement and handwriting traces. In addition, a 4 × 4 sensor array and a wireless transmission system were constructed to realize multi-point distributed detection and wireless transmission of portable smart terminals. The S-TENG can harvest energy from falling water droplets, uninterrupted water flow, wind and percussion sounds, which demonstrates its broad application prospects in the field of flexible wearables.

Graphical abstract

摘要

随着可穿戴电子设备的快速发展, 现代便携式能源更加注重轻量化, 低成本, 高灵活性和高效率。本文提出一种由多壁碳纳米管 (MWCNT) /聚二甲基硅氧烷 (PDMS) 薄膜组成的柔性单电极摩擦纳米发电机 (S-TENG)。 该纳米发电机具有高柔韧性, 高疏水性, 重量轻, 成本低, 输出效率高等优势。在按压作用下峰值开路电压可达435 V, 最大短路电流密度为13 μA·cm−2。外部负载为 40 MΩ 时, 最大输出功率密度 3.7 mW·cm−2。该纳米发电机不仅可以收集生物运动机械能, 而且可以作为传感器实现对人体运动和手写痕迹的有效检测。此外, 构建了4×4传感阵列和无线传输系统, 实现了多点分布检测和便携式智能终端无线传输。该纳米发电机可从下落的水滴, 不间断的水流, 风和敲击声音中获取能量, 展示了其在柔性可穿戴领域的广阔应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo XX, Zhu LP, Wang YC, Li JY, Nie JJ, Wang ZL. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Funct Mater. 2021;31(38):2104928.

    CAS  Google Scholar 

  2. Zheng ZP, Yu D, Guo YP. Dielectric modulated glass fiber fabric-based single electrode triboelectric nanogenerator for efficiently biomechanical energy harvesting. Adv Funct Mater. 2021;31(32):2102431.

    CAS  Google Scholar 

  3. Wu YH, Luo Y, Qu JK, Daoud WA, Qi T. Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy. 2020;75:105027.

    CAS  Google Scholar 

  4. Wang L, Liu W, Yan Z, Wang F, Wang X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv Funct Mater. 2021;31(7):2007221. https://doi.org/10.1002/adfm.202007221.

    Article  CAS  Google Scholar 

  5. Shankaregowda SA, Ahmed RFSM, Nanjegowda CB, Wang JW, Guan SR, Puttaswamy M, Amini A, Zhang YL, Kong DJ, Sannathammegowda K, Wang F, Cheng C. Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy. 2019;66:104141.

    Google Scholar 

  6. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of Co-free and Ni-rich LiNixMn1−xO2 (0.5<x<1) cathode materials. Chin J Rare Met. 2020;44(9):996.

    Google Scholar 

  7. Pi XX, Cao XH, Chen JS, Zhang L, Fu ZX, Wang LX, Zhang QT. Improved Ag-Si interface performance for Si solar cells using a novel Te-based glass and recrystallization process of Ag. Rare Met. 2021;40(1):84.

    Google Scholar 

  8. Qu JJ, Zhang LR, Song XM, Zhang YZ, Wang H, Yan H. Research progress of copper indium gallium selenide thin film solar cells. Chin J Rare Met. 2020;44(3):313.

    Google Scholar 

  9. Song YD, Wang N, Hu CS, Wang ZL, Yang Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy. 2021;84:105919.

    CAS  Google Scholar 

  10. Xiang SX, Liu DJ, Jiang CC, Zhou WM, Ling D, Zheng WT, Sun XP, Li X, Mao YC, Shan CX. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv Funct Mater. 2021;31(26):2100940.

    CAS  Google Scholar 

  11. Qian YT, Kangg DJ. Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation. ACS Appl Mater Interfaces. 2018;10(38):32281.

    CAS  Google Scholar 

  12. Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy. 2012;1(2):328.

    CAS  Google Scholar 

  13. Zhang DZ, Wang DY, Xu ZY, Zhang XX, Yang Y, Guo JY, Zhang B, Zhao WH. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev. 2021;427:213597.

    CAS  Google Scholar 

  14. Zhang M, Jie Y, Cao X, Bian J, Li T, Wang N, Wang ZL. Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy. 2016;30:155.

    CAS  Google Scholar 

  15. Zhu YB, Yang B, Liu JQ, Wang XZ, Wang LX, Chen X, Yang CS. A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci Rep. 2016;6:22233.

    CAS  Google Scholar 

  16. Xu WH, Zheng HX, Liu Y, Zhou XF, Zhang C, Song YX, Deng X, Leung M, Yang ZB, Xu RX, Wang ZL, Zeng XC, Wang ZK. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578(7795):392.

    CAS  Google Scholar 

  17. Wang M, Zhang JH, Tang YJ, Li J, Zhang BS, Liang EJ, Mao YC, Wang XD. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano. 2018;12(6):6156.

    CAS  Google Scholar 

  18. Guo HY, Pu XJ, Chen J, Meng Y, Yeh MH, Liu GL, Tang Q, Chen BD, Liu D, Qi S, Wu CS, Hu CG, Wang J, Wang ZL. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot. 2018;3(20):2516.

    Google Scholar 

  19. Tang YJ, Zhou H, Sun XP, Diao NH, Wang JB, Zhang BS, Qin C, Liang EJ, Mao YC. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv Funct Mater. 2019;30(5):1907893.

    Google Scholar 

  20. Zhang N, Qin C, Feng TX, Li J, Yang ZR, Sun XP, Liang EJ, Mao YC, Wang XD. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020;13(7):1903.

    Google Scholar 

  21. Wang DY, Zhang DZ, Yang Y, Mi Q, Zhang JH, Yu LD. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano. 2021;15(2):2911.

    CAS  Google Scholar 

  22. Zhang BS, Tang YJ, Dai RR, Wang HY, Sun XP, Qin C, Pan ZF, Liang EJ, Mao YC. Breath-based human-machine interaction system using triboelectric nanogenerator. Nano Energy. 2019;64:103953.

    CAS  Google Scholar 

  23. Zhou D, Zhao L, Li B. Recent progress in solution assembly of 2D materials for wearable energy storage applications. J Energy Chem. 2021;62:27.

    Google Scholar 

  24. Zhang Y, Mei HX, Cao Y, Yan XH, Yan J, Gao HL, Luo HW, Wang SW, Jia XD, Kachalova L, Yang J, Xue SC, Zhou CG, Wang LX, Gui YH. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord Chem Rev. 2021;438:213910.

    CAS  Google Scholar 

  25. Guo YJ, Wei X, Gao S, Yue WJ, Li Y, Shen GZ. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater. 2021;31(40):2104288.

    CAS  Google Scholar 

  26. Zhang W, Liu HZ, Zhang XA, Li XJ, Zhang GH, Cao P. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv Funct Mater. 2021;31(40):2104909.

    CAS  Google Scholar 

  27. He W, Qian Y, Lee BS, Zhang F, Rasheed A, Jung JE, Kang DJ. Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films. ACS Appl Mater Interfaces. 2018;10(51):44415.

    CAS  Google Scholar 

  28. Hazarika A, Deka BK, Seo J, Jeong HE, Park YB, Park HW. Porous spongy FexCo1-xP nanostructure and MXene infused self-powered flexible textile based personal thermoregulatory device. Nano Energy. 2021;86:106042.

    CAS  Google Scholar 

  29. Li E, Pan YM, Wang CF, Liu CT, Shen CY, Pan CF, Liu XH. Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem Eng J. 2021;420:129864.

    CAS  Google Scholar 

  30. Kim MP, Ahn CW, Lee Y, Kim K, Park J, Ko H. Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy. 2021;82:105697.

    CAS  Google Scholar 

  31. Chun J, Kim JW, Jung WS, Kang CY, Kim SW, Wang ZL, Baik JM. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ Sci. 2015;8(10):3006.

    CAS  Google Scholar 

  32. He YX, Wu DY, Zhou MY, Zheng YJ, Wang TF, Lu C, Zhang L, Liu H, Liu CT. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl Mater Interfaces. 2021;13(13):15572.

    CAS  Google Scholar 

  33. Li H, Yuan D, Li PC, He CB. High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Compos Part A Appl Sci Manuf. 2019;121:411.

    CAS  Google Scholar 

  34. Xia LY, Li XL, Wu YQ, Hu SH, Liao Y, Huang L, Qing Y, Lu XH. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chem Eng J. 2020;379:122325.

    CAS  Google Scholar 

  35. Tan YJ, Li J, Cai JH, Tang XH, Liu JH, Hu ZQ, Wang M. Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Compos B Eng. 2019;177:107378.

    CAS  Google Scholar 

  36. Hwang H, Lee KY, Shin D, Shin J, Kim S, Choi W. Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers. Appl Surf Sci. 2018;442:693.

    CAS  Google Scholar 

  37. Zheng YJ, Li YL, Dai K, Wang Y, Zheng GQ, Liu CT, Shen CY. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos Sci Technol. 2018;156:276.

    CAS  Google Scholar 

  38. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces. 2009;1(5):1090.

    CAS  Google Scholar 

  39. Zha JW, Li WK, Liao RJ, Bai JB, Dang ZM. High performance hybrid carbon fillers/binary-polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J Mater Chem A. 2013;1(3):843.

    CAS  Google Scholar 

  40. Liu GF, Chen Y, Gong MJ, Liu XY, Cui ZK, Pei QB, Gu JL, Huang C, Zhuang QX. Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. J Mater Chem C. 2018;6(40):10829.

    CAS  Google Scholar 

  41. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMs thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces. 2021;13(7):8871.

    CAS  Google Scholar 

  42. Kuziel AW, Dzido G, Turczyn R, Rafal GJ, Kolanowska A, Tracz A, Zi WJ, Cyganiuk A, Terzyk AP, Boncel S. Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials. J Energy Storage. 2021;36:102396.

    Google Scholar 

  43. Gidi L, Arce R, Ibarra J, Isaacs M, Aguirre MJ, Ramirez G. Hydrogen evolution reaction highly electrocatalyzed by MWCNT/N-octylpyridinum hexafluorophosphate metal-free system. Electrochim Acta. 2021;372:137859.

    CAS  Google Scholar 

  44. Liu H, Gao JC, Huang WJ, Dai K, Zheng GQ, Liu CT, Shen CY, Yan XR, Guo J, Guo ZH. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale. 2016;8(26):12977.

    CAS  Google Scholar 

  45. Fu SK, He WC, Tang Q, Wang Z, Liu WL, Li QY, Shan CC, Long L, Hu CG, Liu H. An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv Mater. 2021;34:2105882.

    Article  CAS  Google Scholar 

  46. Wang Y, Liu XY, Chen TY, Wang H, Zhu CQ, Yu HY, Song LG, Pan XX, Mi JC, Lee C, Xu MY. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy. 2021;90:106503.

    CAS  Google Scholar 

  47. Dong J, Xu CY, Zhu LL, Zhao XS, Zhou HY, Liu HW, Xu GB, Wang G, Zhou GD, Zeng QF, Song QL. A high voltage direct current droplet-based electricity generator inspired by thunderbolts. Nano Energy. 2021;90:106567.

    CAS  Google Scholar 

  48. Zhao ZN, Zhang Z, Xu LX, Gao FF, Zhao B, Kang Z, Liao QL, Zhang Y. Tumbler-shaped hybrid triboelectric nanogenerators for amphibious self-powered environmental monitoring. Nano Energy. 2020;76:104960.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51777215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Zhi Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2341 KB)

Supplementary file2 (MP4 4882 KB)

Supplementary file3 (MP4 5952 KB)

Supplementary file4 (MP4 1989 KB)

Supplementary file5 (MP4 1827 KB)

Supplementary file6 (MP4 5955 KB)

Supplementary file7 (MP4 6319 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, DZ., Wang, DY. et al. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 41, 3117–3128 (2022). https://doi.org/10.1007/s12598-022-02031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02031-z

Keywords

Navigation