Skip to main content

Advertisement

Log in

Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The efficiency of electrochemical water splitting is extremely hampered by the sluggish oxygen evolution reaction (OER) occurred at the anode. Therefore, developing high-performance OER electrocatalysts is crucial for realizing the industrialized application of water splitting. Herein, a high-efficiency electrocatalyst of ruthenium-decorated nickel-iron hydroxide (10Ru-NiFe LDH) supported on Ni foam is successfully synthesized for OER. Modifying NiFe LDH with ruthenium can optimize the electronic density to form high valences of metal sites, which is beneficial to promote its OER performance. Consequently, the 10Ru-NiFe LDH only needs a low overpotential of 222 mV to achieve a current density of 50 mA·cm−2, which exhibits fast OER kinetics with a small Tafel slope of 58 mV·dec−1. Moreover, this electrocatalyst shows high stability over 20 h at a high current density of 100 mA·cm−2 without obvious decay. The decent OER performances can be ascribed to the increased active sites and the synergistic electronic interactions among Ni, Fe and Ru. This work provides an effective approach for designing desirable electrocatalysts for OER.

Graphical abstract

摘要

阳极处缓慢的析氧反应(OER)极大地阻碍了电解水的效率。因此, 开发高性能的OER电催化剂是实现电解水工业化应用的关键。基于此, 本工作成功地合成了—种负载在泡沫镍基底上的钌修饰的镍铁氢氧化物(10Ru-NiFe LDH)高效电催化剂。钌修饰可以优化电子密度, 形成高价态的金属位点, 有利于促进OER。因此, 10Ru-NiFe LDH具有良好的OER活性。其只需要 222 mV 的低过电位就可以达到 50 mA· cm-2 的电流密度。该催化剂同时表现出快速OER动力学, Tafel斜率为 58 mV·dec-1。此外, 在100 mA·cm-2的大电流密度下, 该电催化剂在20 h内表现出很高的稳定性, 且没有明显的电压衰减。催化剂优异的OER性能主要归因于Ni, Fe和Ru之间的电子相互作用和增加的活性位点。这项工作为设计理想的OER电催化剂提供了—种有效的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM. Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012;11(6):550.

    Article  CAS  Google Scholar 

  2. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373.

    Article  CAS  Google Scholar 

  3. Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis. Science. 2017;358(6364):751.

    Article  CAS  Google Scholar 

  4. Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy. 2019;4(6):519.

    Article  CAS  Google Scholar 

  5. Wang HY, Weng CC, Ren JT, Yuan ZY. An overview and recent advances in electrocatalysts for direct seawater splitting. Front Chem Sci Eng. 2021;15(6):1408.

    Article  Google Scholar 

  6. Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406.

    Article  CAS  Google Scholar 

  7. Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 2014;345(6204):1593.

    Article  CAS  Google Scholar 

  8. Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan D. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun. 2020;11(1):2522.

    Article  CAS  Google Scholar 

  9. Cai C, Wang M, Han S, Wang Q, Zhang Q, Zhu Y, Yang X, Wu D, Zu X, Sterbinsky GE. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020;11(1):123.

    Article  CAS  Google Scholar 

  10. Yu J, Li G, Liu H, Zeng L, Zhao L, Jia J, Zhang M, Zhou W, Liu H, Hu Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv Sci. 2019;6(18):1901458.

    Article  CAS  Google Scholar 

  11. McCrory CCL, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135(45):16977.

    Article  CAS  Google Scholar 

  12. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today. 2016;262:170.

    Article  CAS  Google Scholar 

  13. Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv Mater. 2019;31(8):1806312.

    Article  CAS  Google Scholar 

  14. Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IE, Chorkendorff I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci. 2015;6(1):190.

    Article  CAS  Google Scholar 

  15. Ren JT, Yao Y, Yuan ZY. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy Environ. 2021;6(5):620.

    Article  Google Scholar 

  16. Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2021;40(1):125.

    Article  CAS  Google Scholar 

  17. Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv Funct Mater. 2021;31(38):2102772.

    Article  CAS  Google Scholar 

  18. Liu K, Wang F, He P, Shifa TA, Wang Z, Cheng Z, Zhan X, He J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv Energy Mater. 2018;8(15):1703290.

    Article  CAS  Google Scholar 

  19. Chen C, Tao L, Du S, Chen W, Wang Y, Zou Y, Wang S. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv Funct Mater. 2020;30(14):1909832.

    Article  CAS  Google Scholar 

  20. Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ Sci. 2020;13(10):3439.

    Article  CAS  Google Scholar 

  21. Tang Y, Liu Q, Dong L, Wu HB, Yu XY. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B: Environ. 2020;266:118627.

    Article  CAS  Google Scholar 

  22. Ren JT, Wang YS, Chen L, Gao LJ, Tian WW, Yuan ZY. Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem Eng J. 2020;389:124408.

    Article  CAS  Google Scholar 

  23. Zhang JW, Zhang H, Ren TZ, Yuan ZY, Bandosz TJ. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Front Chem Sci Eng. 2021;15(2):279.

    Article  CAS  Google Scholar 

  24. Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;59(4):1718.

    Article  CAS  Google Scholar 

  25. Zhang H, Wu X, Chen C, Lv C, Liu H, Lv Y, Guo J, Li J, Jia D, Tong F. Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chem Eng J. 2021;417:128069.

    Article  CAS  Google Scholar 

  26. Tian L, Li Z, Xu X, Zhang C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J Mater Chem A. 2021;9(23):13459.

    Article  CAS  Google Scholar 

  27. Sun H, Zhang W, Li JG, Li Z, Ao X, Xue KH, Ostrikov KK, Tang J, Wang C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B: Environ. 2021;284:119740.

    Article  CAS  Google Scholar 

  28. Yu J, Guo Y, She S, Miao S, Ni M, Zhou W, Liu M, Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(39):1800047.

    Article  CAS  Google Scholar 

  29. He J, Zhou X, Xu P, Sun J. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy. 2021;80:105540.

    Article  CAS  Google Scholar 

  30. Niu S, Kong XP, Li S, Zhang Y, Wu J, Zhao W, Xu P. Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl Catal B: Environ. 2021;297:120442.

    Article  CAS  Google Scholar 

  31. Li Y, Abbott J, Sun Y, Sun J, Du Y, Han X, Wu G, Xu P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl Catal B: Environ. 2019;258:117952.

    Article  CAS  Google Scholar 

  32. Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interf Sci. 2022;605:779.

    Article  CAS  Google Scholar 

  33. Qu M, Jiang Y, Yang M, Liu S, Guo Q, Shen W, Li M, He R. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl Catal B: Environ. 2020;263:118234.

    Article  CAS  Google Scholar 

  34. Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun. 2015;6(1):6616.

    Article  CAS  Google Scholar 

  35. Feng JX, Xu H, Dong YT, Ye SH, Tong YX, Li GR. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55(11):3694.

    Article  CAS  Google Scholar 

  36. Zhao J, Zhang JJ, Li ZY, Bu XH. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small. 2020;16(51):2003916.

    Article  CAS  Google Scholar 

  37. Zhang G, Wang B, Bi J, Fang D, Yang S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(10):5769.

    Article  CAS  Google Scholar 

  38. Wu Y, Tao X, Qing Y, Xu H, Yang F, Luo S, Tian C, Liu M, Lu X. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv Mater. 2019;31(15):1900178.

    Article  CAS  Google Scholar 

  39. Xue Q, Sun HY, Li YN, Zhong MJ, Li FM, Tian X, Chen P, Yin SB, Chen Y. Au@Ir core-shell nanowires towards oxygen reduction reaction. Chem Eng J. 2021;421:129760.

    Article  CAS  Google Scholar 

  40. Duan Y, Yu ZY, Hu SJ, Zheng XS, Zhang CT, Ding HH, Hu BC, Fu QQ, Yu ZL, Zheng X. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed. 2019;58(44):15772.

    Article  CAS  Google Scholar 

  41. Bo X, Hocking RK, Zhou S, Li Y, Chen X, Zhuang J, Du Y, Zhao C. Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction. Energy Environ Sci. 2020;13(11):4225.

    Article  CAS  Google Scholar 

  42. Rasouli H, Hosseini MG, Hosseini MM. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting. J Colloid Interf Sci. 2021;582:254.

    Article  CAS  Google Scholar 

  43. Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040.

    Article  CAS  Google Scholar 

  44. Cai L, Qiu B, Lin Z, Wang Y, Ma S, Wang M, Tsang YH, Chai Y. Active site engineering of Fe-and Ni-sites for highly efficient electrochemical overall water splitting. J Mater Chem A. 2018;6(43):21445.

    Article  CAS  Google Scholar 

  45. Dinh KN, Zheng P, Dai Z, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14(8):1703257.

    Article  CAS  Google Scholar 

  46. Liu S, Wang X, Yu HG, Wu YP, Li B, Lan YQ, Wu T, Zhang J, Li DS. Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021;40(2):489.

    Article  CAS  Google Scholar 

  47. Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun. 2020;11(1):4173.

    Article  CAS  Google Scholar 

  48. Chen K, Cao M, Lin Y, Fu J, Liao H, Zhou Y, Li H, Qiu X, Hu J, Zheng X, Shakouri M, Xiao Q, Hu Y, Li J, Liu J, Cortés E, Liu M. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv Funct Mater. 2021;32(10):2111322.

    Article  CAS  Google Scholar 

  49. Chen G, Wang T, Zhang J, Liu P, Sun H, Zhuang X, Chen M, Feng X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater. 2018;30(10):1706279.

    Article  CAS  Google Scholar 

  50. Chen QQ, Hou CC, Wang CJ, Yang X, Shi R, Chen Y. Ir4+-doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chem Commun. 2018;54(49):6400.

    Article  CAS  Google Scholar 

  51. Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed. 2015;54(25):7399.

    Article  CAS  Google Scholar 

  52. Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts. ACS Energy Lett. 2018;3(7):1515.

    Article  CAS  Google Scholar 

  53. Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc. 2013;135(33):12329.

    Article  CAS  Google Scholar 

  54. Liu X, Meng J, Ni K, Guo R, Xia F, Xie J, Li X, Wen B, Wu P, Li M, Wu J, Wu X, Mai L, Zhao D. Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep Phys Sci. 2020;1(11):100241.

    Article  Google Scholar 

  55. Görlin M, Ferreira de Araújo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J Am Chem Soc. 2017;139(5):2070.

    Article  CAS  Google Scholar 

  56. Kuai C, Zhang Y, Wu D, Sokaras D, Mu L, Spence S, Nordlund D, Lin F, Du XW. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019;9(7):6027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 12074435, 51871250 and 52001335), the Science and Technology Innovation Program of Hunan Province (No. 2021RC4001) and the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metal (No. SKL-SPM-202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Fei Tan or Pan Jun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Liao, HX., Wang, ZL. et al. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 41, 2606–2615 (2022). https://doi.org/10.1007/s12598-022-02003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02003-3

Keywords

Navigation