Skip to main content

Advertisement

Log in

CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the rapid development of consumer electronics, electric vehicles and grid-scale stationary energy storage, high-energy batteries are urgently demanded at present. Lithium metal batteries (LMBs) are considered to be one of the most promising high-energy density energy storage devices at present and have received much attention due to their ultra-high theoretical capacity, extremely low electrochemical potential and light mass. However, critical issues, such as uncontrollable lithium dendrite growth, dynamic changes in volume, interfacial impedance, severe chemical and electrochemical corrosion, remain huge challenges for Li metal anodes, which not only lead to low Columbic efficiency of LMBs, but also pose the risk of internal short circuit, causing serious side reactions and safety concerns that hinder LMBs from practical applications. Nevertheless, lithium metal is gradually poised for a revival after decades of oblivion, due to the development of research tools and nanotechnology-based solutions. In this review, various recent material designs for lithium metal anodes are reviewed based on previous theoretical understanding and analysis. Suppressing Li dendrites and ensuring the long life span of practical batteries through limited Li metal anodes design are still challenges. Multi-scale modeling methods are concerned, requiring the application of electrode material development. Hybrid multi-scale modeling application methods with machine learning technology are proposed based on the cloud computing platform. Computational material designs for Li metal anodes on model information are integrated with artificial intelligence. Finally, this review provides a novel framework for next-generation lithium metal anode design methods with a digital solution based on multi-scale data-driven models and machine learning techniques.

Graphical Abstract

摘要

随着电子消费产品、电动汽车以及电网规模固定能源储存装置的快速发展, 人们迫切需求发展高能量密度电池。锂金属电池被认为是最具有潜力的高能量密度存储设备之一, 并且由于它超高的理论容量、极低的电化学电势以及轻质量而获得研究人员的广泛关注。然而, 锂金属电池的发展仍然有许多挑战, 比如不可控的锂枝晶生长, 体积的动态变化, 界面阻抗, 严重的化学和电化学腐蚀等等, 这些问题不仅导致了锂金属电池的低库伦效率, 同时还导致了内短路的风险, 有可能进一步引发更严重的副反应和安全隐患。不过, 在经过几十年的遗忘之后, 锂金属已经在准备重新复兴, 这得利于研究工具和纳米技术方法的快速发展。在这篇综述里, 近年来的锂金属负极各种材料设计被阐述。通过锂金属负极抑制锂枝晶以及延长电池的使用寿命仍然是挑战。多尺度模型方法被重点关注, 同时还需要推动电极材料发展的应用。基于机器学习技术的混合多尺度模型应用方法被提出, 同时云计算平台也被应用。通过人工智能技术, 锂金属负极的材料设计信息实现整合。最后, 这篇综述提出了一种新的框架用于开发下一代锂金属负极设计方法, 该框架基于多尺度数据驱动模型和机器学习技术为锂金属负极设计提供了数字化解决方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1.

    Article  Google Scholar 

  2. Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 2012;5(7):7854.

    Article  CAS  Google Scholar 

  3. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292.

    Article  Google Scholar 

  4. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev. 2018;118(23):11433.

    Article  CAS  Google Scholar 

  5. Kwak WJ, Rosy SD, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev. 2020;120(14):6626.

    Article  CAS  Google Scholar 

  6. Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2(5):833.

    Article  CAS  Google Scholar 

  7. Li S, Leng D, Li W, Qie L, Dong Z, Cheng Z, Fan Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 2020;27:279.

    Article  Google Scholar 

  8. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1.

    Article  Google Scholar 

  9. Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev. 2020;120(14):6783.

    Article  CAS  Google Scholar 

  10. Joubert CJ, Chokani N, Abhari RS. Impact of large scale battery energy storage on the 2030 central european transmission grid. In: International Conference on the European Energy Market EEM. IEEE; 2018. 1.

  11. Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van MJ. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies. 2017;10(9):1314.

    Article  Google Scholar 

  12. Statharas S, Moysoglou Y, Siskos P, Zazias G, Capros P. Factors influencing electric vehicle penetration in the EU by 2030: a model-based policy assessment. Energies. 2019;12:2739.

    Article  Google Scholar 

  13. Lutsey N, Nicholas M. Update on electric vehicle costs in the United States through 2030. Int Counc Clean Transp. 2019. https://doi.org/10.13140/RG.2.2.25390.56646.

  14. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.

    Article  CAS  Google Scholar 

  15. Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2021;40(7):1971.

  16. Li HP, Ji XY, Liang JJ. Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Met. 2020;39(8):861.

    Article  CAS  Google Scholar 

  17. Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 2019;1(1):100003.

    Article  Google Scholar 

  18. Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1.

    Google Scholar 

  19. Liu X, Qian X, Tang W, Luo H, Zhao Y, Tan R, Qiao M, Gao X, Hua Y, Wang H, Zhao S, Lai C, Titirici MP, Brandon N, Yang S, Wu B. Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J Energy Chem. 2020;52:385.

    Article  Google Scholar 

  20. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2015;3(3):1.

    Google Scholar 

  21. Jie Y, Ren X, Cao R, Cai W, Jiao S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv Funct Mater. 2020;30(25):1.

    Article  Google Scholar 

  22. Cui J, Zhan TG, Da ZK, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171.

    Article  CAS  Google Scholar 

  23. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1(7):16071.

    Article  CAS  Google Scholar 

  24. Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1:16114.

    Article  CAS  Google Scholar 

  25. Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019;5(1):74.

    Article  CAS  Google Scholar 

  26. Wang Q, Yang C, Yang JJ, Wu K, Qi L, Tang H, Zhang ZY, Liu W, Zhou H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018;15:249.

    Article  Google Scholar 

  27. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater. 2017;7(24):1.

    Google Scholar 

  28. Fotouhi A, Auger DJ, Propp K, Longo S, Wild M. A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew Sustain Energy Rev. 2016;56:1008.

    Article  CAS  Google Scholar 

  29. Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. 2012;3:1166.

    Article  Google Scholar 

  30. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv Energy Mater. 2020;10(11):1.

    Article  Google Scholar 

  31. Zhao M, Peng HJ, Wei JY, Huang JQ, Li BQ, Yuan H, Qiang Z. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods. 2020;4(6):1.

    Google Scholar 

  32. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci. 2020;6(7):1095.

    Article  CAS  Google Scholar 

  33. Liu X, He Q, Yuan H, Yan C, Zhao Y, Xu X, Huang JQ, Chueh YL, Zhang Q, Mai LQ. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. J Energy Chem. 2020;48:109.

    Article  Google Scholar 

  34. Yao Y, Zhang X, Li B, Yan C, Chen P, Huang J, Zhang Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat. 2020;2(2):379.

    Article  CAS  Google Scholar 

  35. Zhu GL, Zhao CZ, Yuan H, Zhao BC, Hou LP, Cheng XB, Nan HX, Lu Y, Zhang J, Huang JQ, Liu QB, He CX, Zhang Q. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Mater. 2020;31:267.

    Article  Google Scholar 

  36. Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chemie Int Ed. 2018;57(19):5301.

    Article  CAS  Google Scholar 

  37. Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764.

    Article  CAS  Google Scholar 

  38. Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang JJ, Gogotsi Y. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017;8(1):1.

    Article  Google Scholar 

  39. Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317.

    Article  Google Scholar 

  40. Zhao J, Liao L, Shi F, Lei T, Chen G, Pei A, Sun J, Yan K, Zhou G, Xie J, Liu C, Li YZ, Liang Z, Bao ZN, Cui Y. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc. 2017;139(33):11550.

    Article  CAS  Google Scholar 

  41. Zhao Y, Sun Q, Li X, Wang C, Sun Y, Adair KR, Li R, Sun X. Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes. Nano Energy. 2018;43:368.

    Article  CAS  Google Scholar 

  42. Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu P, Bao Z, Cui Y. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc. 2017;139(13):4815.

    Article  CAS  Google Scholar 

  43. Liu K, Kong B, Liu W, Sun Y, Song MS, Chen J, Liu Y, Lin D, Pei A, Cui Y. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule. 2018;2(9):1857.

    Article  CAS  Google Scholar 

  44. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.

    Article  CAS  Google Scholar 

  45. Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu P, Wang J, Cheng H, Cui Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol. 2017;12(10):993.

    Article  CAS  Google Scholar 

  46. Ruan Y, Lu Y, Li Y, Zheng C, Su J, Jin J, Xiu T, Song Z, Badding ME, Wen Z. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater. 2021;31(5):1.

    Article  Google Scholar 

  47. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.

    Article  CAS  Google Scholar 

  48. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    Article  CAS  Google Scholar 

  49. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396.

    Article  CAS  Google Scholar 

  50. Cao Y, Meng X, Elam JW. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem. 2016;3(6):858.

    Article  CAS  Google Scholar 

  51. Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee S, Rublof GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.

    Article  CAS  Google Scholar 

  52. Hatzell KB, Chen XC, Cobb CL, Dasgupta NP, Dixit MB, Marbella LE, McDowell MT, Mukherjee PP, Verma A, Viswanathan V, Westover A, Zeier WG. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020;5(3):922.

    Article  CAS  Google Scholar 

  53. Shen X, Zhang R, Chen X, Cheng XB, Li X, Zhang Q. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv Energy Mater. 2020;10(10):1.

    CAS  Google Scholar 

  54. Heenan TMM, Tan C, Hack J, Brett DJL, Shearing PR. Developments in X-ray tomography characterization for electrochemical devices. Mater Today. 2019;31:69.

    Article  CAS  Google Scholar 

  55. Daemi SR, Tan C, Vamvakeros A, Heenan TMM, Finegan DP, Di Michiel M, Beale AM, Cookson J, Petrucco E, Weaving JS, Jacques S, Jervis R, Brett DJL, Shearing PR. Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography. Phys Chem Chem Phys Royal Soc Chem. 2020;22(32):17814.

    Article  CAS  Google Scholar 

  56. Finegan DP, Vamvakeros A, Cao L, Tan C, Heenan TMM, Daemi SR, Jacques SDM, Beale AM, Michiel MD, Smith K, Brett DJL, Shearing PR, Ban C. Spatially resolving lithiation in silicon-graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett Am Chem Soc. 2019;19(6):3811.

    Article  CAS  Google Scholar 

  57. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    Article  CAS  Google Scholar 

  58. Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Kon A, Perrino YYJ, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 2017;358(6362):506.

    Article  CAS  Google Scholar 

  59. Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc. 2016;138(47):15443.

    Article  CAS  Google Scholar 

  60. Zhang R, Shen X, Cheng XB, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 2019;23:556.

    Article  Google Scholar 

  61. Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich M, Cohen Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources. 1999;81–82:95.

    Article  Google Scholar 

  62. Morigaki KI, Ohta A. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources. 1998;76(2):159.

    Article  CAS  Google Scholar 

  63. Albertus P, Girishkumar G, McCloskey B, Sánchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J Electrochem Soc. 2011;158(3):A343.

    Article  CAS  Google Scholar 

  64. Rechkemmer SK, Zang X, Zhang W, Sawodny O. Empirical Li-ion aging model derived from single particle model. J Energy Storage. 2019;21:773.

    Article  Google Scholar 

  65. Wu Y, Xie L, Ming H, Guo Y, Hwang JY, Wang W, He X, Wang LM, Alshareef HN, Sun YK, Ming J. An empirical model for the design of batteries with high energy density. ACS Energy Lett. 2020;5(3):807.

    Article  CAS  Google Scholar 

  66. Han B, Li XY, Bai S, Zou YC, Lu BY, Zhang MH, Ma XM, Chan Z, Meng YS, Gu M. Conformal three-dimensional interphase of Li metal anode revealed by low dose cryo-electron microscopy. Matter. 2021;4(11):3741.

    Article  CAS  Google Scholar 

  67. Liu DH, Bai Z, Li M, Yu A, Luo D, Liu W, Yang L, Lu J, Amine K, Chen ZW. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem Soc Rev. 2020;49(15):5407.

    Article  CAS  Google Scholar 

  68. Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy. 2016;28:1.

  69. Gireaud L, Grugeon S, Laruelle S, Yrieix B, Tarascon JM. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem Commun. 2006;8(10):1639.

    Article  CAS  Google Scholar 

  70. Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent Sci. 2018;4(8):996.

    Article  CAS  Google Scholar 

  71. Xu Q, Li Z, Liu M, Yin WJ. Rationalizing perovskite data for machine learning and materials design. J Phys Chem Lett. 2018;9(24):6948.

    Article  CAS  Google Scholar 

  72. Kilic A, Odabaşı Ç, Yildirim R, Eroglu D. Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. Chem Eng J. 2020;390(15):124117.

    Article  CAS  Google Scholar 

  73. Dixit MB, Verma A, Zaman W, Zhong X, Kenesei P, Park JS, Almer J, Mukherjee PP, Hatzell KB. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning. ACS Appl Energy Mater. 2020;3(10):9534.

    Article  CAS  Google Scholar 

  74. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10(8):1.

    Article  Google Scholar 

  75. Aykol M, Herring P, Anapolsky A. Machine learning for continuous innovation in battery technologies. Nat Rev Mater. 2020;5(10):725.

    Article  Google Scholar 

  76. Attia PM, Grover A, Jin N, Severson KA, Markov TM, Liao YH, Chen MH, Cheong B, Perkins N, Yang Z, Herring PK, Aykol M, Harris SJ, Braatz RD, Ermon S, Chueh WC. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 2020;578(7795):397.

    Article  CAS  Google Scholar 

  77. Roman D, Saxena S, Robu V, Pecht M, Flynn D. Machine learning pipeline for battery state-of-health estimation. Nat Mach Intell. 2021;3(5):447.

    Article  Google Scholar 

  78. Zhang Y, He X, Chen Z, Bai Q, Nolan AM, Roberts CA, Banerjee D, Matsunaga T, Mo YF, Ling C. Unsupervised discovery of solid-state lithium ion conductors. Nat Commun. 2019;10(1):1.

    Google Scholar 

  79. Nie Z, Liu Y, Yang L, Li S, Pan F. Construction and application of materials knowledge graph based on author disambiguation: revisiting the evolution of LiFePO4. Adv Energy Mater. 2021;11(16):1.

    Article  Google Scholar 

  80. Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.

    Article  Google Scholar 

  81. Wu B, Widanage WD, Yang S, Liu X. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI. 2020;1:100016.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFB0103700) and National Natural Science Foundation of China (No. U1864213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Hua Liu or Shi-Chun Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LS., Gao, XL., Liu, XH. et al. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 41, 1477–1489 (2022). https://doi.org/10.1007/s12598-021-01925-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01925-8

Keywords

Navigation