Skip to main content
Log in

Interface stabilization of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether to high-voltage Li-rich Mn-based layered cathode materials

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Non-aqueous electrolyte solvents play a pivotal role in improving the cycling performance of high-voltage Li-rich Mn-based layered cathode materials. In this study, a fluoroether (1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, TFEPE) was added to 1.2 mol·L−1 LiPF6 EC/EMC/DEC at different concentrations to synthesize a series of electrolytes for enhancing the cycling performance of high-voltage Li1.18Mn0.50Ni0.26Co0.06O2 (LMNC). Effects of TFEPE on the electrochemical performance of LMNC at 0.1C and 1.0C rates were investigated. Scanning electron microscopy was used to observe the surface morphology of LMNC before and after cycling. X-ray photoelectron spectroscopy was conducted to analyze the surface compositions and chemical states, and transmission electron microscopy was performed to directly examine the changes in the structure of LMNC before and after cycling. Results suggested that TFEPE was preferentially oxidized and produced inorganic compounds (MeF and Li2CO3) on the surface of LMNC, which effectively inhibited the side reactions between LMNC and the electrolyte. MeF and Li2CO3 delayed the propagation of the phase transitions of LMNC primary particles from the surface to the bulk, thereby improving the cycling performance of LMNC.

Graphic abstract

摘要

非水电解质溶剂对改善高压富锂锰基层状阴极材料的循环性能起着关键作用。在本研究中, 将不同浓度的氟代醚(1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚, TFEPE) 添加到1.2 mol·L−1 LiPF6 EC/EMC/DEC中, 配置了一系列电解液, 用于提升高压Li1.18Mn0.50Ni0.26Co0.06O2( LMNC) 的循环性能。研究了TFEPE在0.1C和1.0C下对LMNC电化学性能的影响, 并利用扫描电子显微镜观察循环前后LMNC的表面形貌, 同时采用X射线光电子能谱分析了LMNC的表面组成和化学状态, 最后用透射电子显微镜直接观察了LMNC在循环前后的结构变化。研究结果表明, TFEPE能优先被氧化, 并在LMNC表面生成无机化合物( MeF和Li2CO3) , 因此有效抑制了LMNC与电解液之间的副反应, 并减缓了LMNC一次颗粒从表面到体相的尖晶石相转变, 从而改善了LMNC的循环性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

References

  1. Zhang XH, Zou LF, Xu YB, Cao X, Engelhard MH, Matthews BE, Zhong LR, Wu HP, Jia H, Ren XD, Gao PY, Chen ZH, Qin Y, Kompella C, Arey BW, Li J, Wang DY, Wang CM, Zhang JG, Xu W. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv Energy Mater. 2020;10(22):2000368.

    Article  CAS  Google Scholar 

  2. Suo LM, Xue WJ, Gobet M, Greenbaum SG, Wang C, Chen YM, Yang WL, Li YX, Li J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Nat Acad Sci. 2018;115(6):1156.

    Article  CAS  Google Scholar 

  3. Wang CY, Zuo XX, Zhao MK, Xiao X, Yu L, Nan JM. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells. J Power Sourc. 2016;307(5):772.

    Article  CAS  Google Scholar 

  4. Kim CK, Kim K, Shin K, Woo JJ, Kim S, Hong SY, Choi NS. Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability. ACS Appl Mater Interfaces. 2017;50(9):44161.

    Article  Google Scholar 

  5. Hu LB, Zhang ZC, Amine K. Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem Commun. 2013;35(10):76.

    Article  CAS  Google Scholar 

  6. Zhang ZC, Hu LB, Wu HM, Weng W, Koh W, Redfern PC, Curtiss LA, Amine K. Fluorinated electrolytes for 5V lithium-ion battery chemistry. Energy Environ Sci. 2013;6(6):1806.

    Article  CAS  Google Scholar 

  7. Wang CY, Tang SH, Zuo XX, Xiao X, Liu JS, Nan JM. 3-(1,1,2,2-Tetrafluoroethoxy) -1,1,2,2-tetrafluoropropane as a high voltage solvent for LiNi1/3Co1/3Mn1/3O2/graphite cells. J Electrochem Soc. 2015;162(10):A1997.

    Article  CAS  Google Scholar 

  8. Zhang XH, Jia H, Xu YB, Zou LF, Engelhard MH, Matthews BE, Wang CM, Zhang JG, Xu W. Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte. J Power Sourc Adv. 2020;5(10):100024.

    Article  Google Scholar 

  9. Zhang XH, Zou LF, Xu YB, Cao X, Engelhard MH, Matthews BE, Zhong LR, Wu HP, Jia H, Ren XD, Gao PY, Chen ZH, Qin Y, Kompella C, Arey BW, Li J, Wang DY, Wang CM, Zhang JG, Xu W. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv Energy Mater. 2020;10(22):2000368.

    Article  CAS  Google Scholar 

  10. Chen SR, Zheng JM, Mei DH, Han KS, Engelhard MH, Zhao WG, Xu W, Liu J, Zhang JG. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater. 2018;30(21):1706102.

    Article  Google Scholar 

  11. Ren XD, Zou LF, Cao X, Engelhard MH, Liu W, Burton SD, Lee HK, Niu CJ, Matthews BE, Zhu ZH, Wang CM, Arey BW, Xiao J, Liu J, Zhang JG, Xu W. Enabling high-voltage lithium-metal batteries under practical conditions. Joule. 2019;3(7):1662.

    Article  CAS  Google Scholar 

  12. Aspern NV, Röschenthaler GV, Winter M, Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew Chem Int Ed. 2019;58(45):15978.

    Article  Google Scholar 

  13. Fan XL, Ji X, Chen L, Chen J, Deng T, Han FD, Yue J, Piao N, Wang RX, Zhou XQ, Xiao XZ, Chen LX, Wang CS. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy. 2019;4(10):882.

    Article  CAS  Google Scholar 

  14. Xu K. Electrolytes and interphases in Li-ion batteries and beyong. Chem Rev. 2014;114(23):11503.

    Article  CAS  Google Scholar 

  15. Ma CC, Wang D, Yang Y, Wu Q, Chen Z, Zhu CZ, Gao Y, Li CH. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode with an ionic liquid-based electrolyte. J Electrochem Soc. 2019;166(14):A3441.

    Article  CAS  Google Scholar 

  16. Liu R, Chen J, Li Z, Ding Q, An X. Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications. Materials. 2018;11(11):2251.

    Article  Google Scholar 

  17. Jia Q, Du J, Liu ZS, Zhou HT, Wen HJ, Liu C, Yang JH. Pseudo-capacitive behavior of graphene oxide paper in AlCl3 and 1-ethyl-3-methylimidazalium chloride (molar ratio of 13:1) solution and its application for aluminium ion batteries. Int J Electrochem Sci. 2019;14(7):9610.

    Google Scholar 

  18. Zhong JJ, Yang Z, Yu Y, Liu YY, Li JL, Kang FY. Surface substitution of polyanion to improve structure stability and electrochemical properties of lithium-rich layered cathode oxides. Appl Surface Sci. 2020;512(10):145741.

    Article  CAS  Google Scholar 

  19. Zheng X, Wang XS, Xing LD, Liao YH, Xu MQ, Liu X, Li WS. Formation mechanism of protective interphase for high voltage cathodes by phenyl trifluoromethyl sulfide. Electrochimica Acta. 2020;352(16):136469.

    Article  CAS  Google Scholar 

  20. Qian YX, Hu SG, Zou XS, Deng ZH, Xu YQ, Cao ZZ, Kang YY, Deng YF, Shi Q, Xu K, Deng YH. How electrolyte additives work in Li-ion batteries. Energy Storage Mater. 2019;20:208–15.

    Article  Google Scholar 

  21. Erickson EM, Li WD, Dolocan A, Manthiram A. Insights into the cathode-electrolyte interphases of high-energy-density cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(14):16451.

    Article  CAS  Google Scholar 

  22. Zhu Y, Casselman MD, Li Y, Wer A, Abraham DP. Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. J Power Sources. 2014;246(2):184.

    Article  CAS  Google Scholar 

  23. Zhuang Y, Lei YQ, Guan MY, Du FH, Cao HS, Dai H, Zhou Q, Adkins J, Zheng JW. 4-Aminobenzoic acid as a novel electrolyte additive for improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes via in situ electrochemical polymerization. Electrochimica Acta. 2020;331(2):135465.

    Article  CAS  Google Scholar 

  24. Rezqita A, Sauer M, Foelske A, Kronberger H, Trifonova A. The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon(Si/MC) for anode materials for lithium-ion batteries. Electrochim Acta. 2017;247(17):600.

    Article  CAS  Google Scholar 

  25. Jenney CR, Anderson JM. Effect of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res. 1999;44(2):206.

    Article  CAS  Google Scholar 

  26. Xue JX, Wang YJ, Sun C, Xu P, Fan XX, Fan JM, Zheng MS, Dong QF. Suppressing voltage fading and improving cycling stability for Li-rich Mn-based materials by introducing MgSO4. J Mater Chem A. 2020;8(43):22763.

    Article  CAS  Google Scholar 

  27. Tasaki K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. J Phys Chem B. 2005;109(7):2920.

    Article  CAS  Google Scholar 

  28. Chen YC, Ouyang CY, Song LJ, Sun ZL. Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J Phys Chem. 2011;15(14):7044.

    Google Scholar 

  29. Shi SQ, Qi Y, Li H Jr, Hector LG. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J Phys Chem. 2013;117(17):8579.

    CAS  Google Scholar 

  30. Zhang SY, Liu Y, Liu HL. Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation. Mol Simul. 2020;46(7):573.

    Article  CAS  Google Scholar 

  31. Pei Y, Chen Q, Wang MY, Li B, Wang P, Henkelman G, Zhen L, Cao GZ, Xu CY. Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects. Nano Energy. 2020;71(3):104644.

    Article  CAS  Google Scholar 

  32. Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). J Electrochem Soc. 2013;160(11):A2005.

    Article  CAS  Google Scholar 

  33. Uchida E, Iwata H, Ikada Y. Surface Structure of poly(ethylene terephthalate) film grafted with poly(methacrylic acid). Polymer. 2000;41(10):3609.

    Article  CAS  Google Scholar 

  34. Zheng YY, Xiong CD, Zhang LF. Dose-dependent enhancement of osteoblast cell adhesion, spreading and proliferation on plasma-carboxylated poly(etheretherketone) surface. Mater Lett. 2016;164(3):60.

    Article  CAS  Google Scholar 

  35. Dalavi S, Guduru P, Lucht BL. Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc. 2012;159(5):A642.

    Article  CAS  Google Scholar 

  36. Holoubek J, Yu MY, Yu SC, Li MQ, Wu ZH, Xia DW, Bhaladhare P, Gonzalez MS, Pascal TA, Liu P, Chen Z. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 2020;5(5):1438.

    Article  CAS  Google Scholar 

  37. Chen L, Fan XL, Hu EY, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang XQ, Wang CS. Achieving high energy density through increasing the output voltage: a highly reversible 5.3V battery. Chem. 2019;5(4):896.

    Article  CAS  Google Scholar 

  38. Rana J, Papp JK, Lebens-Higgins Z, Zuba M, Kaufman LA, Goel A, Schmuch R, Winter M, Whittingham MS, Yang WL, Mccloskey BD, Piper LFJ. Quantifying the capacity contributions during activation of Li2MnO3. ACS Energy Lett. 2020;5(2):634.

    Article  CAS  Google Scholar 

  39. Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edström K, Guo JH, Chadwick AV, Duda LC, Bruce PG. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(3):684.

    Article  CAS  Google Scholar 

  40. Lee J, Yu DW, Zhu Z, Yao XH, Wang C, Dong YH, Malik R, Li J. Kinetic rejuvenation of Li-rich Li-ion battery cathodes upon oxygen redox. ACS Appl Energy Mater. 2020;3(8):7931.

    Article  CAS  Google Scholar 

  41. House RA, Maitra U, Pérez-Osorio MA, Lozano JG, Jin LY, Somerville JW, Duda LC, Nag A, Walters A, Zhou KJ, Roberts MR, Bruce PG. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature. 2020;577(7791):502.

    Article  CAS  Google Scholar 

  42. Wang M, Han YQ, Zhang MX, Chu M, Liu M, Gu YJ. Enhancing the electrochemical performance of Li-rich cathode material by a flexible precursor treatment method. Solid State Ionics. 2020;357(23):115498.

    Article  CAS  Google Scholar 

  43. Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616.

    Article  CAS  Google Scholar 

  44. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of Co-free and Ni-rich LiNixMn1-xO2(0.5<x<1)cathode materials. Chinese J Rare Metals. 2020;44(9):996.

  45. Varenne F, Alper JP, Miserque F, Bongu CS, Boulineau A, Martin JF, Dauvois V, Demarque A, Bouhier M, Boismain F, Franger S, Herlin-Boime N, Caër SL. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustain Energy Fuels. 2018;2(7):2100.

    Article  CAS  Google Scholar 

  46. Wu B, Ren YH, Mu DB, Liu XJ, Zhao JC, Wu F. Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte. J Solid State Electrochem. 2013;17(6):811.

    Article  CAS  Google Scholar 

  47. Huang XD, Gan XF, Huang QA, Yang JZ. Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries. Front Energy. 2018;12(2):225.

    Article  Google Scholar 

  48. Wang E, Zhao Y, Xiao DD, Zhang X, Wu TH, Wang B, Zubair M, Li YQ, Sun XL, Yu HJ. Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv Mater. 2020;32(49):1906070.

    Article  CAS  Google Scholar 

  49. Liu LL, Wang SL, Zhang ZY, Fan JT, Qi W, Chen SM. Fluoroethylene carbonate as an electrolyte additive for improving interfacial stability of high-voltage LiNi0.6Co0.2Mn0.2O2 cathode. Ionics. 2018;25(3):1035.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation for Young Scientists of China (No. 22005264), Beijing Natural Science Foundation Program (No. L182023) and the Youth Fund Project of GRINM (No. 12620203129011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, AL., Li, GH., Lu, SG. et al. Interface stabilization of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether to high-voltage Li-rich Mn-based layered cathode materials. Rare Met. 41, 822–829 (2022). https://doi.org/10.1007/s12598-021-01845-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01845-7

Navigation