Skip to main content
Log in

Ag/AgX nanostructures serving as antibacterial agents: achievements and challenges

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bacterial infections, especially the frequently emerging “superbugs”, seriously affect the quality of human life and even threaten human health. As the emerging antimicrobial agents that effectively eradicate pathogens, nanomaterials have been widely explored due to their effectiveness against wide-spectrum bacteria and “superbugs”. Of them, Ag/AgX nanostructures (X representing Cl, Br or I) have emerged as an excellent antibacterial agent because of their excellent photocatalytic performance in inactivating pathogens under light irradiation, which provides a new opportunity for the development of high-efficient visible-light driven photocatalytic sterilization. To date, Ag/AgX nanostructures have been widely employed in antibacterial associated fields because they are efficient in producing reactive oxygen species (ROS) and reactive chlorine species (RCS) under visible light irradiation. In this review, we summarized the recent progress of Ag/AgX nanostructures as plasmonic photocatalysts in the antibacterial field, focusing on the antibacterial effects and mechanisms of Ag/AgX nanostructures, as well as their potent applications. Finally, the challenges and prospects of Ag/AgX nanostructures acting as active antibacterial agents were discussed.

Graphical abstract

摘要

细菌感染, 尤其是频繁出现的 “超级细菌”, 严重影响人类生活质量, 甚至威胁人类健康。纳米材料作为一种新兴的、能够有效根除病原体的抗菌剂, 对广谱细菌和 “超级细菌”的有效作用被广泛研究。其中, Ag/AgX纳米结构(X代表Cl,Br或I)在光照下具有优异光催化性能而灭活病原体, 成为一种优良的抗菌剂, 为开发高效可见光驱动的光催化杀菌技术提供了新的契机。迄今为止, Ag/AgX 纳米结构因在可见光照射下能有效地产生活性氧 (ROS) 和活性氯 (RCS)已广泛应用于抗菌相关领域。在这篇综述中, 作者总结了 Ag/AgX 纳米结构作为等离子体光催化剂在抗菌领域的最新进展, 重点介绍了 Ag/AgX 纳米结构的抗菌作用和机制, 以及它们的潜在应用。最后, 讨论了Ag/AgX 纳米结构作为活性抗菌剂的挑战和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [40]. Copyright 2020, Springer Nature B.V. b photocatalytic inactivation processes and charge transfer of the Ag/AgBr-CNTs photocatalyst under visible light irradiation. Reproduced with permission from Ref. [7]. Copyright 2014, Elsevier. c Schematic illustration of solar-photocatalytic disinfection of E. coli and S. aureus in presence of Ag/AgCl. Reproduced with permission from Ref. [33] Copyright 2019, Elsevier

Fig. 2
Fig. 3

Reproduced with permission from Ref. [36]. Copyright 2019, Elsevier

Fig. 4

Reproduced with permission from Ref. [37]. Copyright 2012, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [16]. Copyright 2020, The Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [35]. Copyright 2016, Elsevier

Fig. 7

Reproduced with permission from Ref. [34]. Copyright 2018, The Royal Society of Chemistry

Fig. 8

Reproduced with permission from Ref. [41] Copyright 2019, Elsevier

Fig. 9

Reproduced with permission from Ref. [39]. Copyright 2019, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [78]. Copyright 2020, Springer

Fig. 11

Reproduced with permission from Ref. [42]. Copyright 2017, The Royal Society of Chemistry

Fig. 12

Reproduced with permission from Ref. [62]. Copyright 2020, Springer Nature B.V

Fig. 13

Reproduced with permission from Ref. [87]. Copyright 2009, The Royal Society of Chemistry. b Core–shell Ag/AgCl sphere material. Reproduced with permission from Ref. [85]. Copyright, 2012 Elsevier B.V. c Necklace-like Ag/AgCl. Reproduced with permission from Ref. [84]. Copyright 2014, Wiley–VCH. d Ag@AgCl nanotubes. Reproduced with permission from Ref. [86]. Copyright 2014, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [64]. Copyright 2017, Elsevier

Fig. 15

Reproduced with permission from Ref. [94]. Copyright 2020, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [32]. Copyright 2017, American Chemical Society

Fig. 17

Reproduced with permission from Ref. [15]. Copyright 2016, American Chemical Society

Fig. 18

Reproduced with permission from Ref. [107]. Copyright 2018, Elsevier B.V

Similar content being viewed by others

References

  1. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122.

    CAS  Google Scholar 

  2. Dong A, Wang YJ, Gao YY, Gao TY, Gao G. Chemical insights into antibacterial N-halamines. Chem Rev. 2017;117(6):4806.

    CAS  Google Scholar 

  3. Sun YH, Zhao CQ, Niu JS, Ren JR, Qu XG. Colorimetric band-aids for point-of-care sensing and treating bacterial infection. ACS Cent Sci. 2020;6(2):207.

    CAS  Google Scholar 

  4. Zhang YN, Liu WX, Li YJ, Yang YW, Dong A, Li YL. 2D graphdiyne oxide serves as a superior new generation of antibacterial agents. Science. 2019;19:662.

    CAS  Google Scholar 

  5. Hwang GB, Huang H, Wu GW, Shin J, Kafizas A, Karu K, Toit HD, Alotaibi AM, Layla Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light. Nat Commun. 2020;11(1):1207.

    CAS  Google Scholar 

  6. You JH, Guo YZ, Guo R, Liu XW. A review of visible light-active photocatalysts for water disinfection: features and prospects. Chem Eng J. 2019;373:624.

    CAS  Google Scholar 

  7. Shi HX, Li GY, Sun HW, An TC, Zhao HJ, Wong PK. Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X=Cl, Br, I) plasmonic photocatalysts: bacterial performance and deactivation mechanism. Appl Catal B-Environ. 2014;158–159:301.

    Google Scholar 

  8. Zimbone M, Buccheri MA, Cacciato G, Sanza R, Rappazzoc G, Boninellia S, Reitanob R, Romanob L, Priviteraa V, Grimaldia MG. Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B-Environ. 2015;165:487.

    CAS  Google Scholar 

  9. Kulathunga KMSDB, Yan CF, Bandara J. Photocatalytic removal of airborne indoor pollutants by IR illuminated silver coated TiO2 catalyst: advantage of one-dimensional TiO2 nanostructures in IR active photocatalysis. Colloid Surface A. 2020;590:124509.

    CAS  Google Scholar 

  10. Wang HF, Wei LY, Wang ZQ, Chen SG. Preparation, characterization and long-term antibacterial activity of Ag-poly(dopamine)-TiO2 nanotube composites. RSC Adv. 2016;6(17):14097.

    CAS  Google Scholar 

  11. Hamilton JF. The silver halide photographic process. Ad Phys. 1988;37(4):359.

    CAS  Google Scholar 

  12. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed. 2008;47(41):7931.

    CAS  Google Scholar 

  13. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52(6):1636.

    CAS  Google Scholar 

  14. Singh A, Dubey AK. Various biomaterials and techniques for improving antibacterial response. ACS Appl Bio Mater. 2018;1(1):3.

    CAS  Google Scholar 

  15. Zhou YZ, Chen R, He TT, Xu K, Du D, Zhao N, Cheng XN, Yang J, Shi HF, Lin YH. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl Mater Interfaces. 2016;8(24):15067.

    CAS  Google Scholar 

  16. Thangudu S, Kulkarni SS, Vankayala R, Chiangc CS, Hwang KC. Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core-shell Ag@AgCl nanocubes as an external nanomedicine. Nanoscale. 2020;12(24):12970.

    CAS  Google Scholar 

  17. Chang XT, Sun SB, Dong LH, Yin YS. Efficient synthesis of Ag/AgCl/W18O49 nanorods and their antibacterial activities. Mater Lett. 2012;83:133.

    CAS  Google Scholar 

  18. Zhang YH, Tang ZR, Fu XZ, Xu YJ. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl Catal B-Environ. 2011;106(3–4):445.

    CAS  Google Scholar 

  19. Tang YX, Jiang ZL, Deng JY, Gong DG, Lai YK, Tay HT, Joo ITK, Lau TH, Dong ZL, Chen Z. Synthesis of nanostructured silver/silver halides on titanate surfaces and their visible-light photocatalytic performance. ACS Appl Mater Interfaces. 2012;4(1):438.

    CAS  Google Scholar 

  20. Xu YG, Zhou T, Huang SQ, Xie M, Li HP, Xu H, Xia JX, Li HM. Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability. RSC Adv. 2015;5(52):41475.

    CAS  Google Scholar 

  21. Zhu MS, Chen PL, Liu MH. Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions: a comparison of sunlight energized plasmonic photocatalytic activity. Langmuir. 2012;28(7):3385.

    CAS  Google Scholar 

  22. Tian GH, Chen YJ, Bao HL, Meng XY, Pan K, Zhou W, Tian CG, Wang JQ, Fu HG. Controlled synthesis of thorny anatase TiO2 tubes for construction of Ag–AgBr/TiO2 composites as highly efficient simulated solar-light photocatalyst. J Mater Chem. 2012;22(5):2081.

    CAS  Google Scholar 

  23. Wang WJ, Li GY, Xia DH, An TC, Zhao HJ, Wong PK. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci-Nano. 2017;4(4):782.

    CAS  Google Scholar 

  24. Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R. Development of Ag/AgX (X=Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym. 2018;197(1):227.

    CAS  Google Scholar 

  25. Zhao M, Hou XX, Wang YY, Li CD, Meng A. Synthesis of Ag/AgCl modified anhydrous basic bismuth nitrate from BiOCl and the antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2019;98:83.

    CAS  Google Scholar 

  26. Liao XW, Yang F, Wang RM, He XJ, Li HY, Kao RYT, Xia W, Sun HZ. Identification of catabolite control protein A from Staphylococcus aureus as a target of silver ions. Chem Sci. 2017;8(12):8061.

    CAS  Google Scholar 

  27. Tian X, Jiang XM, Welch C, Croley TR, Wong TY, Chen C, Fan SH, Chong Y, Li RB, Ge CC, Chen CY, Yin JJ. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Appl Mater Interfaces. 2018;10(10):8443.

    CAS  Google Scholar 

  28. Panáček D, Hochvaldová L, Bakandritsos A, Malina T, Langer M, Belza J, Martincová J, Večeřová R, Lazar P, Poláková K, Kolařík J, Válková L, Kolář M, Otyepka M, Panáček A, Zbořil R. Silver covalently bound to cyanographene overcomes bacterial resistance to silver nanoparticles and antibiotics. Adv Sci. 2021. https://doi.org/10.1002/advs.202003090.

    Article  Google Scholar 

  29. Sun DD, Zhang WW, Mou ZP, Chen Y, Guo F, Yang ED, Wang WY. Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. ACS Appl Mater Interfaces. 2017;9(11):10047.

    CAS  Google Scholar 

  30. Abeyweera SC, Rasamani KD, Sun Y. Ternary silver halide nanocrystals. Acc Chem Res. 2017;50(7):1754.

    CAS  Google Scholar 

  31. Jin C, Liu XM, Tan L, Cui ZD, Yang XJ, Zheng YF, Yeung KWK, Chu PK, Wu SL. Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing. Biomater Sci. 2018;6(7):1735.

    CAS  Google Scholar 

  32. Mao CY, Xiang YM, Liu XM, Cui ZD, Yang XJ, Yeung KWK, Pan HB, Wang XB, Chu PK, Wu SL. Photoinspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano. 2017;11(9):9010.

    CAS  Google Scholar 

  33. Cheikhrouhou W, Kannous L, Ferraria AM, Rego AMBD, Kamoun A, Vilare MR, Boufi S. AgCl/Ag functionalized cotton fabric: an effective plasmonic hybrid material for water disinfection under sunlight. Sol Energy. 2019;183:653.

    CAS  Google Scholar 

  34. Hanmant GS, Koratti A, Mukherjee SP. Facile tuning of Ag@AgCl cubical hollow nanoframes with efficient sunlight-driven photocatalytic activity. Appl Surf Sci. 2019;465:413.

    Google Scholar 

  35. Xia DH, An TC, Li GY, Wang WJ, Zhao HJ, Wong PK. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic Ag-AgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation. Water Res. 2016;99:149.

    CAS  Google Scholar 

  36. Yan YC, Zhou XQ, Yu P, Li ZF, Zheng TL. Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection. App Catal-A-Gen. 2020;590:1117282.

    Google Scholar 

  37. Hou Y, Li XY, Zhao QD, Chen GH, Raston C. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ Sci Technol. 2012;46(7):4042.

    CAS  Google Scholar 

  38. Song RX, Wang H, Zhang M, Liu YY, Meng XF, Zhai SJ, Wang CC, Gong T, Wu YL, Jiang XW, Bu WB. Near-infrared light-triggered chlorine radical (·Cl) stress for cancer therapy. Angew Chem Int Ed. 2020;59(47):21032.

    CAS  Google Scholar 

  39. Mao CY, Xiang YM, Liu XM, Zheng YF, Yeung KWK, Cui ZD, Yang XJ, Li ZY, Liang YQ, Zhu SL, Wu SL. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage. ACS Appl Mater Interfaces. 2019;11(19):17902.

    CAS  Google Scholar 

  40. Jing ZH, Liu X, Du Y, He YC, Yan TJ, Wng WL, Li WJ. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites. Front Mater Sci. 2020;14(1):1.

    Google Scholar 

  41. Yu NX, Peng HL, Qiu L, Wang RH, Jiang CJ, Cai TM, Sun Y, Li YB, Xiong H. New pectin-induced green fabrication of Ag@AgCl/ZnO nanocomposites for visible-light triggered antibacterial activity. Int J Biol Macromol. 2019;141:207.

    CAS  Google Scholar 

  42. Patil MP, Palma J, Simeon NC, Jin X, Liu XL, Ngabire D, Kim NH, Tarteb NH, Kim GD. Sasa borealis leaf extract-mediated green synthesis of silver-silver chloride nanoparticles and their antibacterial and anticancer activities. New J Chem. 2017;41(3):1363.

    CAS  Google Scholar 

  43. Alishah H, Pourseyedi S, Mahani SE, Ebrahimipour SY. Extract-mediated synthesis of Ag@AgCl nanoparticles using conium maculatum seeds: characterization, antibacterial activity and cytotoxicity effect against MCF-7 cell line. RSC Adv. 2016;6(77):73197.

    CAS  Google Scholar 

  44. Dai L, Liu R, Hu LQ, Si CL. Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohyd Polym. 2017;174:450.

    CAS  Google Scholar 

  45. Ma W, Li L, Lin XH, Wang YF, Ren XH, Huang TS. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications. ACS Appl Mater Interfaces. 2019;11(34):31411.

    CAS  Google Scholar 

  46. Tian BZ, Dong RF, Zhang JM, Bao SY, Yang F, Zhang JL. Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Appl Catal B-Environ. 2014;158–159:76.

    Google Scholar 

  47. Ren YW, Liu HP, Liu XM, Zheng YF, Li ZY, Li CY, Yeung KWK, Zhu SL, Liang YQ, Cui ZD, Wu SL. Photoresponsive materials for antibacterial applications. Cell Rep Phys Sci. 2020;1(11):100245.

    Google Scholar 

  48. Qin RR, Liu YC, Tao F, Li C, Gao WF, Yang P. Protein-bound freestanding 2D metal film for stealth information transmission. Adv Mater. 2019;31(5):1803377.

    Google Scholar 

  49. Saif B, Zhang WX, Gu Q, Yang P. Sn-triggered two-dimensional fast protein assembly with emergent functions. ACS Nano. 2019;13(7):7736.

    CAS  Google Scholar 

  50. Shang B, Wang YB, Yang P, Peng B, Deng ZW. Synthesis of superhydrophobic polydopamine-Ag microbowl/nanoparticle array substrates for highly sensitive, durable and reproducible surface-enhanced ramanscattering detection. Sens Actuators, B Chem. 2018;255:995.

    CAS  Google Scholar 

  51. Sawada I, Fachrul R, Ito T, Ohmukai Y, Maruyama T, Matsuyama H. Development of a hydrophilic polymer membrane containing AgNPs with both organic antifouling and antibacterial properties. J Membrane Sci. 2012;387–388:1.

    Google Scholar 

  52. Shu Y, Guo X, Wang L, Guo YL, Guo Y, Zhan WC. Synthesis of ultra-small Ag nanoparticles and their catalytic performance for epoxidation of propylene. Chin J Rare Metals. 2019;43(3):225.

    Google Scholar 

  53. Kou JH, Varma RS. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. Chemsuschem. 2012;5(12):2435.

    CAS  Google Scholar 

  54. Zhang M, Qiu JJ, Yin T, Tan CL. Research progress and application prospect of silver nanoparticles and nanoporous silver materials. Chin J Rare Metals. 2020;44(1):79.

    Google Scholar 

  55. Senthil RA, Osman S, Pan JQ, Sun M, Khan A, Yang V, Sun YZ. A facile single-pot synthesis of WO3/AgCl composite with enhanced photocatalytic and photoelectrochemical performance under visible-light irradiation. Colloid Surface A. 2019;567:171.

    CAS  Google Scholar 

  56. Huang SQ, Xu YG, Chen ZG, Xie M, Xu H, He MQ, Li HM, Zhang Q. A core–shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv. 2015;5(87):71035.

    CAS  Google Scholar 

  57. Li QY, Chang SZ, Wu D, Bao SY, Zeng CY, Nasir M, Tian BZ, Zhang JL. Synthesis of cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts and comparison of their photocatalytic activity for degradation of methyl orange and 2,4-dichlorophenol. Res Chem Intermediat. 2018;44(8):4651.

    CAS  Google Scholar 

  58. Li X, Yu JG, Wageh S, Al-Ghamdi AA, Xie J. Graphene in photocatalysis: a review. Small. 2016;12(48):6640.

    CAS  Google Scholar 

  59. Li JD, Fang W, Yu CL, Zhou WQ, Zhu LH, Xie Y. Ag-based semiconductor photocatalysts in environmental purification. Appl Surf Sci. 2015;358:46.

    CAS  Google Scholar 

  60. Gamage McEvoy J, Zhang ZS. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J Photoch Photobio C. 2014;19:62.

    CAS  Google Scholar 

  61. Zhou H, Zhou J, Wang TF, Zeng JX, Liu LH, Jian J, Zhou ZH, Zeng LW, Liu QQ, Liu GQ. In-situ preparation of silver salts/collagen fiber hybrid composites and their photocatalytic and antibacterial activities. J Hazard Mater. 2018;359:274.

    CAS  Google Scholar 

  62. Urakaev FK, Khan NV, Shalabaev ZS, Tatykaev BB, Nadirov RK, Burkitbaev MM. Synthesis and photocatalytic properties of silver chloride/silver composite colloidal particles. Colloid J. 2020;82(1):76.

    CAS  Google Scholar 

  63. Gou JF, Li XH, Zhang HX, Guo RN, Deng XY, Cheng XW, Xie MZ, Cheng QF. Synthesis of silver/silver chloride/exfoliated graphite nano-photocatalyst and its enhanced visible light photocatalytic mechanism for degradation of organic pollutants. J Ind Eng Chem. 2018;59:99.

    CAS  Google Scholar 

  64. Wang XH, Han QS, Yu N, Wang T, Wang C, Yang R. GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloid Surfe B. 2018;162:296.

    Google Scholar 

  65. Attia YA, Mohamed YMA. Silicon-grafted Ag/AgX/rGO nanomaterials (X = Cl or Br) as dip-photocatalysts for highly efficient p-nitrophenol reduction and paracetamol production. Appl Organomet Chem. 2019;33(3):e4757.

    Google Scholar 

  66. Tang J, Xiong PY, Cheng Y, Chen Y, Peng SW, Zhu ZQ. Enzymatic oxydate-triggered AgNPs etching: a novel signal-on photoelectrochemical immunosensing platform based on Ag@AgCl nanocubes loaded RGO plasmonic heterostructure. Biosens Bioelectron. 2019;130:125.

    CAS  Google Scholar 

  67. Lv X, Wang TH, Jiang W. Preparation of Ag@AgCl/g-C3N4/TiO2 porous ceramic films with enhanced photocatalysis performance and self-cleaning effect. Ceram Int. 2018;44(8):9326.

    CAS  Google Scholar 

  68. Tian WH, Wu HY, Su CY, Huang Y, Zhao WY, Yang XD. Heterostructure based on silver/silver chloride nanocubes loaded titanium dioxide nanofibers: a high-efficient and recyclable visible light-responsive photocatalyst. J Photoch Photobio A. 2018;350:122.

    CAS  Google Scholar 

  69. Wang YF, Zhang M, Li J, Yang HC, Gao J, He G, Sun ZQ. Construction of Ag@AgCl decorated TiO2 nanorod array film with optimized photoelectrochemical and photocatalytic performance. Appl Surf Sci. 2019;476:84.

    CAS  Google Scholar 

  70. Lou SY, Wang W, Wang LX, Zhou SM. In-situ oxidation synthesis of Cu2O/Ag/AgCl microcubes with enhanced visible-light photocatalytic activity. J Alloy Comp. 2019;781:508.

    CAS  Google Scholar 

  71. Errokh A, Cheikhrouhou W, Ferraria AM. Cotton decorated with Cu2O-Ag and Cu2O-Ag-AgBr NPs via an in-situ sacrificial template approach and their antibacterial efficiency. Colloid Surf B. 2021;200:111600.

    CAS  Google Scholar 

  72. Cai AJ, Guo AY, Du LQ, Qi YL. Leaf-templated synthesis of hierarchical AgCl-Ag-ZnO composites with enhanced visible-light photocatalytic activity. Mater Res Bull. 2018;103:225.

    CAS  Google Scholar 

  73. Fang HB, Cao X, Yu JJ, Lv X, Yang N, Wang TH, Jiang W. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light. J Mater Sci. 2018;54(1):286.

    Google Scholar 

  74. Jiang ZY, Pan JQ, Wang BB, Li CR. Two dimensional Z-scheme AgCl/Ag/CaTiO3 nano-heterojunctions for photocatalytic hydrogen production enhancement. Appl Surf Sci. 2018;436:519.

    CAS  Google Scholar 

  75. Gao XM, Shang YY, Liu LB, Nie W, Fu F. AgCl/Ag/LaFeO3 heterojunction with a prolonged charge lifetime and enhanced visible light catalytic property. J Phys Chem Solid. 2019;127:186.

    CAS  Google Scholar 

  76. Liu QQ, Xu YG, Wang J, Xie M, Wei W, Huang LY, Xu H, Song YH, Li HM. Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloid Surf A. 2018;553:114.

    CAS  Google Scholar 

  77. Li YJ, Bai HP, Feng NN, Xie XL, Zhang J, Li W. Silver chloride nanoparticles-decorated molybdenum disulfide nanosheets for highly sensitive chloramphenicol detection. Mater Exp. 2019;9(1):59.

    CAS  Google Scholar 

  78. Cui YP, Thathsarani N, Peng L, Gao Y, Lei LD, Zhou ZW, Liang LL, Shi XY. Visible light-activated 1-D core-shell paramagnetic Fe-Ag@AgCl as an innovative method for photocatalytic inactivation of E. coli. Environ Sci Pollut R. 2020;27(11):11990.

    CAS  Google Scholar 

  79. Huang SQ, Xu YG, Xie M, Ma Y, Yan J, Li YP, Zhao Y, Xu H, Li HM. Multifunctional C-doped CoFe2O4 material as cocatalyst to promote reactive oxygen species generation over magnetic recyclable C-CoFe/Ag-AgX photocatalysts. ACS Sustain Chem Eng. 2018;6(9):11968.

    CAS  Google Scholar 

  80. Zhu MS, Chen PL, Liu MH. High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter. Langmuir. 2013;29(29):9259.

    CAS  Google Scholar 

  81. Lou ZZ, Wang ZY, Huang BB, Dai Y. Synthesis and activity of plasmonic photocatalysts. Chem Cat Chem. 2014;6(9):2456.

    CAS  Google Scholar 

  82. Zhou ZD, Peng XW, Zhong LX, Wu L, Cao XF, Sun RC. Electrosp cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohyd Polym. 2016;136:322.

    CAS  Google Scholar 

  83. Lou ZZ, Huang BB, Qin XY, Zhang XY, Cheng HF, Liu YY, Wang SY, Wang JP, Dai Y. One-step synthesis of AgCl concave cubes by preferential overgrowth along <111> and <110> directions. Chem Commun. 2012;48(29):3488.

    CAS  Google Scholar 

  84. Jia CC, Yang P, Huang BB. Uniform Ag/AgCl necklace-like nano-heterostructures: fabrication and highly efficient plasmonic photocatalysis. Chem Cat Chem. 2014;6(2):611.

    CAS  Google Scholar 

  85. Ma BW, Guo JF,  Dai WL, Fan KN. Highly stable and efficient Ag/AgCl core-shell sphere: controllable synthesis, characterization, and photocatalytic application. Appl Catal B-Environ. 2013;130–131:257.

    Google Scholar 

  86. Sun L, Zhang RZ, Wang Y, Chen W. Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS Appl Mater Interfaces. 2014;6(17):14819.

    CAS  Google Scholar 

  87. Bi YP, Ye JH. In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chem Commun. 2009;43:6551.

    Google Scholar 

  88. Tong H, Quyang SX, Bi YP, Umezawa N, Oshokiri M, Ye JH. Nano-photocatalytic materials: possibilities and challenges. Adv Mater. 2012;24(2):229.

    CAS  Google Scholar 

  89. Hou WB, Cronin SB. A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater. 2013;23(13):1612.

    CAS  Google Scholar 

  90. Lou ZZ, Wang ZY, Huang BB, Dai Y. Synthesis and activity of plasmonic photocatalysts. Chem Cat Chem. 2014;6(9):2456.

    CAS  Google Scholar 

  91. Ye LQ, Liu JY, Gong CQ, Tian LH, Peng TY, Zan L. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012;2(8):1677.

    CAS  Google Scholar 

  92. Wei LY, Wang HF, Wang ZQ, Yu MY, Chen SG. Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions. RSC Adv. 2015;5(91):74347.

    CAS  Google Scholar 

  93. Liu T, Song X, Guo ZW, Dong YH, Guo N, Chang XT. Prolonged antibacterial effect of silver nanocomposites with different structures. Colloid Surface B. 2014;116:793.

    CAS  Google Scholar 

  94. Zhang C, Gu YN, Teng GX, Wang LP, Jin XD, Qiang ZW, Ma WG. Fabrication of a double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity. ACS Appl Mater Interfaces. 2020;12(26):29883.

    CAS  Google Scholar 

  95. Spagnoletti FN, Spedalieri C, Krongberg F, Giacometti R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus macrophomina phaseolina. J Environ Manage. 2019;231:457.

    CAS  Google Scholar 

  96. Xie XL, Sun TC, Xue JZ, Miao ZH, Yan X, Fang WW, Li Q, Tang RP, Lu Y, Tang LX, Zha ZB, He T. Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications. Adv Funct Mater. 2020;30(17):2000511.

    CAS  Google Scholar 

  97. Xi YW, Ge J, Guo Y, Lei B, Ma PX. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano. 2018;12(11):10772.

    CAS  Google Scholar 

  98. Zhang LF, Luo J, Menkhaus TJ, Varadaraju H, Sun YY, Fong H. Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Membrane Sci. 2011;369(1–2):499.

    CAS  Google Scholar 

  99. Peng YG, Huang HL, Zhang YX, Kang CF, Chen SM, Song L, Liu DH, Zhong CL. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun. 2018;9(1):187.

    Google Scholar 

  100. Han N, Wang WJ, Lv XS, Zhang WX, Yang C, Wang ML, Kou XH, Li W, Dai Y, Zhang XX. Highly efficient purification of multicomponent wastewater by electrospinning kidney-bean-skin-like porous H-PPAN/rGO-g-PAO@Ag+/Ag composite nanofibrous membranes. ACS Appl Mater Interfaces. 2019;11(50):46920.

    CAS  Google Scholar 

  101. Lei P, Wang F, Gao XW, Ding YF, Zhang SM, Zhao JC, Liu SR, Yang SM. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J Hazard Mater. 2012;227–228:185.

    Google Scholar 

  102. Zhang JQ, Pan XL, Xue QZ, He DL, Zhu L, Guo QK. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion. J Membrane Sci. 2017;532:38.

    CAS  Google Scholar 

  103. Han N, Yang C, Zhang ZX, Wang WJ, Zhang WX, Han CY, Cui ZY, Li W, Zhang XX. Electrostatic assembly of a titanium dioxide@hydrophilic poly(phenylene sulfide) porous membrane with enhanced wetting selectivity for separation of strongly corrosive oil-water emulsions. ACS Appl Mater Interfaces. 2019;11(38):35479.

    CAS  Google Scholar 

  104. Kong WH, Wang SL, Wu D, Chen CR, Luo YS, Pei YT, Tian BZ, Zhang JL. Fabrication of 3D sponge@AgBr-AgCl/Ag and tubular photoreactor for continuous wastewater purification under sunlight irradiation. ACS Sustain Chem Eng. 2019;7(16):14051.

    CAS  Google Scholar 

  105. Ai CL, Yang SK, Zhang F, Shao XW, Xu JG. Ag/AgCl-GO: a composite for degradation of rhodamine B in dye wastewater. Adv Powder Technol. 2019;30(12):3193.

    CAS  Google Scholar 

  106. Zhou ZJ, Long MC, Cai WM, Cai J. Synthesis and photocatalytic performance of the efficient visible light photocatalyst Ag-AgCl/BiVO4. J Mol Catal A-Chem. 2012;353–354:22.

    Google Scholar 

  107. Qayum A, Wei J, Li QN, Chen DR, Jiao XL, Xia YG. Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chem Eng J. 2019;361:1255.

    CAS  Google Scholar 

  108. Lv J, Zhang XM, Yu NY, Su SP, Zhu J, Deng L, Liu ZS. One-pot synthesis of CNC-Ag@AgCl with antifouling and antibacterial properties. Cellulose. 2019;26(13–14):7837.

    CAS  Google Scholar 

  109. Manna J, Goswami S, Shilpa N, Sahu N, Rana RK. Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Appl Mater Interfaces. 2015;7(15):8076.

    CAS  Google Scholar 

  110. Wu DY, Long MC. Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading AgI particles. ACS Appl Mater Interfaces. 2011;3(12):4770.

    CAS  Google Scholar 

  111. Wu DY, Wang LZ, Song XJ, Tan YB. Enhancing the visible-light-induced photocatalytic activity of the self-cleaning TiO2-coated cotton by loading Ag/AgCl nanoparticles. Thin Solid Film. 2013;540:36.

    CAS  Google Scholar 

  112. Tan P, Li YH, Liu XQ, Jiang Y, Sun LB. Core-shell AgCl@SiO2 nanoparticles: Ag(I)-based antibacterial materials with enhanced stability. ACS Sustainable Chem Eng. 2016;4(6):3268.

    CAS  Google Scholar 

  113. Feizi S, Taghipour E, Ghadam P, Mohammadi P. Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva Sylvestris leaf extracts. Microb Pathog. 2018;125:33.

    CAS  Google Scholar 

  114. Dong YY, Deng F, Zhao JJ, He J, Ma MG, Xu F, Sun RC. Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohyd Polym. 2014;99:166.

    CAS  Google Scholar 

  115. Chankaew C, Somsri S, Tapala W, Mahatheeranonta S, Saenjume C, Rujiwatra A. Kaffir lime leaf extract mediated synthesis, anticancer activities and antibacterial kinetics of Ag and Ag/AgCl nanoparticles. Particuology. 2018;40:160.

    CAS  Google Scholar 

  116. Li JJ, Xie YL, Zhong YJ, Hu Y. Facile synthesis of Z-scheme Ag2CO3/Ag/AgBr ternary heterostructured nanorods with improved photostability and photoactivity. J Mater Chem A. 2015;3(10):5474.

    CAS  Google Scholar 

  117. Sun LL, Wu W, Tian QY, Lei M, Liu J, Xiao XH, Zheng XD, Ren F, Jiang CZ. In situ oxidation and self-assembly synthesis of dumbbell-like α-Fe2O3/Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties. ACS Sustainable Chem Eng. 2015;4(3):1521.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21304044, 51663019 and 22062017), the Natural Science Foundation of Inner Mongolia Autonomous Region (Nos. 2015MS0520, 2019JQ03 and 2019BS02004), the State Key Laboratory of Medicinal Chemical Biology (Nos. 201603006 and 2018051), the State Key Laboratory of Polymer Physics and Chemistry (No. 2018-08) and the Program of Higher-Level Talents of Inner Mongolia University (No. 30105-125136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Xia Wu or Alideertu Dong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PP., Wu, HX. & Dong, A. Ag/AgX nanostructures serving as antibacterial agents: achievements and challenges. Rare Met. 41, 519–539 (2022). https://doi.org/10.1007/s12598-021-01822-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01822-0

Keywords

Navigation