Skip to main content

Advertisement

Log in

Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing robust and efficient non-noble electrocatalysts for the hydrogen evolution reaction (HER) is paramount for sustainably producing hydrogen fuel from electrochemical water splitting. Engineering morphology and chemical composition are significant for fabricating electrocatalysts with superior activity and durability. Herein, novel Ni-doped CoSe2 composites are prepared by a facile one-step hydrothermal method. The optimized 1T-phase Co0.75Ni0.25Se2 shows excellent HER performance, exhibiting overpotential of as low as 172 mV at 10 mA·cm–2 and a small Tafel slope of 32.4 mV·dec–1 in 0.5 mol·L−1 H2SO4 solution, approaching that of commercial Pt/C electrocatalyst (30.7 mV·dec–1). Furthermore, the electrocatalyst possesses superior long-term stability under acidic condition. Physicochemical measurements indicate that the homogeneous nanoparticles morphology, the unique electronic structure, and the 1T-phase are responsible for its superior HER performance. This work comes up with a promising strategy in synthesizing other earth-abundant and low-cost catalysts for industrial applications.

Graphical abstract

摘要

开发用于析氢反应(HER)的稳定高效的非贵金属电催化剂对于从电化学水裂解中可持续地生产氢燃料至关重要, 催化剂的形貌和化学组成对其特异性和耐腐蚀性具有重要意义。本文采用一步水热法制备了新型镍掺杂硒化钴杂化催化剂。优化后的1T相样品Co0.75Ni0.25Se2表现出优异的性能, 在电流密度达到10mA·cm-2时仅需低至172 mV的过电位。在0.5 mol·L-1 稀硫酸溶液中, 其塔菲尔斜率约为 32.4 mV·dec-1, 此数值已接近商用Pt/C电催化剂(30.7 mV·dec-1)。此外, 该电催化剂在酸性电解液中具有优异的长效稳定性。测试结果表明, 纳米颗粒的均匀形貌、独特的电子结构和1T相是其优异性能的主要原因。本文提出的高效、廉价催化剂合成方法有望在工业中应用于其它非贵金属催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Liu Y, Sun C, Xi P, Peng S, Gao D, Xue D. Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 2018;3(4):779.

    CAS  Google Scholar 

  2. Zhang K, Park M, Zhou L, Lee GH, Li W, Kang YM, Chen J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater. 2016;26(37):6728.

    CAS  Google Scholar 

  3. Li Y, Polakovic T, Curtis J, Shumlas SL, Chatterjee S, Intikhab S, Chareev DA, Volkova OS, Vasiliev AN, Karapetrov G, Snyder J. Tuning the activity/stability balance of anion doped CoSxSe2−x dichalcogenides. J Catal. 2018;366:50.

    CAS  Google Scholar 

  4. Lin C, Gao Z, Jin J. Boosting alkaline hydrogen evolution activity with Ni-doped MoS2/reduced graphene oxide hybrid aerogel. Chemsuschem. 2019;12(2):457.

    CAS  Google Scholar 

  5. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    CAS  Google Scholar 

  6. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01541-y

    Article  Google Scholar 

  7. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J. CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2016;8(8):5327.

    CAS  Google Scholar 

  8. Jiang J, Zhu L, Chen H, Sun Y, Lin H, Han S. Effect of nickel-doped FeS2 nanoparticles-reduced graphene oxide electrocatalysts for efficient hydrogen evolution. J Alloys and Compounds. 2019;775:1293.

    CAS  Google Scholar 

  9. Zhang Z, Liu Y, Ren L, Zhang H, Huang Z, Qi X, Wei X, Zhong J. Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: a flexible electrode for efficient hydrogen evolution. Electrochim Acta. 2016;200:142.

    CAS  Google Scholar 

  10. Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021. https://doi.org/10.1007/s12598-020-01665-1.

    Article  Google Scholar 

  11. Liu T, Asiri AM, Sun X. Electrodeposited co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale. 2016;8(7):3911.

    CAS  Google Scholar 

  12. Wang Y, Liu R, Sun S, Wu X. Facile synthesis of nickel-cobalt selenide nanoparticles as battery-type electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci. 2019;549:16.

    CAS  Google Scholar 

  13. Mu J, Li J, Yang EC, Zhao XJ. Three-dimensional hierarchical nickel cobalt phosphide nanoflowers as an efficient electrocatalyst for the hydrogen evolution reaction under both acidic and alkaline conditions. ACS Appl Energy Mater. 2018;1(8):3742.

    CAS  Google Scholar 

  14. Wang Z, Wu HH, Li Q, Besenbacher F, Li Y, Zeng XC, Dong M. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2020;7(3):1901382.

    CAS  Google Scholar 

  15. Li J, Liu G, Liu B, Min Z, Qian D, Jiang J, Li J. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta. 2018;265:577.

    CAS  Google Scholar 

  16. She H, Sun Y, Li S, Huang J, Wang L, Zhu G, Wang Q. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl Catal B Environ. 2019;245:439.

    CAS  Google Scholar 

  17. Zhang M, Hu A, Liu Z, Xu Y, Fan B, Tang Q, Zhang S, Deng W, Chen X. Synergistic effect of three-dimensional cobalt diselenide/carbon nanotube arrays composites for enhanced hydrogen evolution reaction. Electrochim Acta. 2018;285:254.

    CAS  Google Scholar 

  18. Kong D, Cha JJ, Wang H, Lee HR, Cui Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci. 2013;6(12):3553.

    CAS  Google Scholar 

  19. Chen T, Tan Y. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 2018;11(3):1331.

    CAS  Google Scholar 

  20. Yang SZ, Gong Y, Manchanda P, Zhang YY, Ye G, Chen S, Song L, Pantelides ST, Ajayan PM, Chisholm MF, Zhou W. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv Mater. 2018;30(51):1803477.

    Google Scholar 

  21. Zheng YR, Wu P, Gao MR, Zhang XL, Gao FY, Ju HX, Wu R, Gao Q, You R, Huang WX, Liu SJ, Hu SW, Zhu J, Li Z, Yu SH. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat Commun. 2018;9(1):2533.

    Google Scholar 

  22. Wu X, Han S, He D, Yu C, Lei C, Liu W, Zheng G, Zhang X, Lei L. Metal organic framework derived Fe-doped CoSe2 incorporated in nitrogen-doped carbon hybrid for efficient hydrogen evolution. ACS Sustain Chem Eng. 2018;6(7):8672.

    CAS  Google Scholar 

  23. Zhou J, Liu Y, Zhang Z, Huang Z, Chen X, Ren X, Ren L, Qi X, Zhong J. Hierarchical NiSe2 sheet-like nano-architectures as an efficient and stable bifunctional electrocatalyst for overall water splitting: phase and morphology engineering. Electrochim Acta. 2018;279:195.

    CAS  Google Scholar 

  24. Cui Y, Zhou C, Li X, Gao Y, Zhang J. High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim Acta. 2017;228:428.

    CAS  Google Scholar 

  25. Chen T, Li S, Wen J, Gui P, Guo Y, Guan C, Liu J, Fang G. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small. 2018;14(5):1700979.

    Google Scholar 

  26. Ouyang C, Wang X, Wang S. Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem Commun. 2015;51(75):14160.

    CAS  Google Scholar 

  27. Zhao W, Wang S, Feng C, Wu H, Zhang L, Zhang J. Novel cobalt-doped Ni0.85Se Chalcogenides (CoxNi0.85–xSe) as high active and stable electrocatalysts for hydrogen evolution reaction in electrolysis water splitting. ACS Appl Mater Interfaces. 2018;10(47):40491.

    CAS  Google Scholar 

  28. Li J, Wan M, Li T, Zhu H, Zhao Z, Wang Z, Wu W, Du M. NiCoSe2-x/N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim Acta. 2018;272:161.

    CAS  Google Scholar 

  29. Wu H, Alshareef HN, Zhu T. Photo-assisted electrochemical hydrogen evolution by plasmonic Ag nanoparticle/nanorod heterogeneity. InfoMat. 2019;1(3):417.

    CAS  Google Scholar 

  30. Chang K, Hai X, Pang H, Zhang H, Shi L, Liu G, Liu H, Zhao G, Li M, Ye J. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv Mater. 2016;28(45):10033.

    CAS  Google Scholar 

  31. Tang Y, Zhao Z, Hao X, Wang Y, Liu Y, Hou Y, Yang Q, Wang X, Qiu J. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J Mater Chem A. 2017;5(26):13591.

    CAS  Google Scholar 

  32. Yu B, Jin J, Wu H, Wang S, Xia Q, Liu H. Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. Int J Hydrogen Energy. 2017;42(1):236.

    CAS  Google Scholar 

  33. Liang J, Yang Y, Zhang J, Wu J, Dong P, Yuan J, Zhang G, Lou J. Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale. 2015;7(36):14813.

    CAS  Google Scholar 

  34. Wang Z, Xiong X, Li J, Dong M. Screening Fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater Today Phys. 2021;16:100290.

    CAS  Google Scholar 

  35. Du CF, Sun X, Yu H, Fang W, Jing Y, Wang Y, Li S, Liu X, Yan Q. V4C3Tx MXene: a promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat. 2020;2(5):950.

    CAS  Google Scholar 

  36. Swesi AT, Masud J, Nath M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci. 2016;9(5):1771.

    CAS  Google Scholar 

  37. Dong Q, Wang Q, Dai Z, Qiu H, Dong X. MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces. 2016;8(40):26902.

    CAS  Google Scholar 

  38. Luo J, Matios E, Wang H, Tao X, Li W. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat. 2020;2(6):1057.

    CAS  Google Scholar 

  39. Le K, Wang Z, Wang F, Wang Q, Shao Q, Murugadoss V, Wu S, Liu W, Liu J, Gao Q, Guo Z. Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 2019;48(16):5193.

    CAS  Google Scholar 

  40. Luo R, Luo M, Wang Z, Liu P, Song S, Wang X, Chen M. The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale. 2019;11(15):7123.

    CAS  Google Scholar 

  41. Chen A, Zhang X, Zhou Z. Machine learning: accelerating materials development for energy storage and conversion. InfoMat. 2020;2(3):553.

    CAS  Google Scholar 

  42. Li H, Chen ZH, Zhao L, Yang GD. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Met. 2019;38(5):420.

    CAS  Google Scholar 

  43. Liu JD, Wei ZX, Dou YH, Feng YZ, Ma JM. Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Met. 2020;39(8):874.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52002254 and 51773049), the National Program for Support of Top-notch Young Professionals, China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund (No. HIT15-1A01), Shanghai Academy of Spaceflight Technology Fund (No. SAST2017-126), the Scientific and Technological Cooperation and Development Fund (No. 2017KJHZ002), Sichuan Science and Technology Program (No. 2020YJ0262), Chunhui Plan of Ministry of Education of China, Fundamental Research Funds for the Central Universities, China (No. YJ201893), and State Key Laboratory of Advanced Metals and Materials, China (No. 2019-Z03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zai-Xing Jiang or Ze-Gao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, XJ., Ren, LP., Li, F. et al. Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Met. 41, 901–910 (2022). https://doi.org/10.1007/s12598-021-01819-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01819-9

Keywords

Navigation