Skip to main content

Advertisement

Log in

Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Biomaterial surfaces with satisfied antibacterial activity and appropriate cytocompatibility are a pressing clinical need for orthopedic and dental implants. Fluorine-containing biomaterials have been demonstrated to obtain antibacterial activity and osteogenic property, while the effect of fluorine chemical compositions on antibacterial property and cytocompatibility is rarely studied. To this end, the coatings with different fluorine chemical compositions on titanium surface were prepared by plasma treatment to verify the antibacterial ability and cytocompatibility of fluorinated surfaces. Their antibacterial ability was evaluated by using Staphylococcus aureus, and the cell compatibility was investigated with MC3T3-E1 cells in vitro. The results show that both fluorocarbon coating and metal fluorides coating exhibited a hydrophilic and nano-scaled roughness. Rather than the fluorocarbon coating, the coating composed of metal fluorides presented satisfied bactericide effect and excellent cytocompatibility. The antibacterial mechanism is associated with the metal fluorides and released fluoride ion. This work would provide novel sight in optimizing the surface modification method of fluorinated biomaterials for biomedical applications.

Graphical abstract

摘要

赋予生物材料表面良好的抗菌活性和生物相容性是临床骨科和牙科植入物的迫切需求。含氟生物材料已被证明具有抗菌活性和成骨性能, 而氟化学成分对材料的抗菌性能和生物相容性的影响却鲜有研究。为此, 本论文通过等离子体处理在纯钛表面制备了具有不同氟化学成分的涂层, 以验证氟化钛表面的抗菌能力和生物相容性。本论文采用金黄色葡萄球菌作为测试菌种评估材料的抗菌能力, 并在体外评价了材料与小鼠前成骨细胞MC3T3-E1的生物相容性。实验结果表明, 氟碳涂层和金属氟化物涂层均表现出亲水性和纳米级粗糙度。与氟碳涂层相比, 由金属氟化物组成的涂层表现出令人满意的杀菌效果和优异的细胞相容性。其抗菌机制与金属氟化物和释放的氟离子有关。这项工作将为制备新型含氟骨科生物材料提供实验依据和理论借鉴。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569.

    Article  CAS  Google Scholar 

  2. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res. 2010;91(1b):470.

    Google Scholar 

  3. Neoh KG, Hu X, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials. 2012;33(10):2813.

    Article  CAS  Google Scholar 

  4. Grischke J, Eberhard J, Stiesch M. Antimicrobial dental implant functionalization strategies-a systematic review. Dent Mater J. 2016;35(4):545.

    Article  CAS  Google Scholar 

  5. Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(Suppl. 16):S158.

    Article  Google Scholar 

  6. Laffer RR, Graber P, Ochsner PE, Zimmerli W. Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect. 2006;12(5):433.

    Article  CAS  Google Scholar 

  7. Wu C, Qu X, Liu F, Li H, Mao Y, Zhu Z. Risk factors for periprosthetic joint infection after total hip arthroplasty and total knee arthroplasty in Chinese patients. PLoS One. 2014;9(4):e95300.

    Article  Google Scholar 

  8. Kessler B, Sendi P, Graber P, Knupp M, Zwicky L, Hintermann B, Zimmerli W. Risk factors for periprosthetic ankle joint infection: a case-control study. J Bone Jt Surg. 2012;94(20):1871.

    Article  Google Scholar 

  9. Liu H, Liu R, Ullah I, Zhang S, Sun Z, Ren L, Yang K. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity. J Mater Sci Technol. 2020;48:130.

    Article  CAS  Google Scholar 

  10. Zheng Y, Li J, Liu X, Sun J. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomed. 2012;7:875.

    CAS  Google Scholar 

  11. Wang J, Li J, Qian S, Guo G, Wang Q, Tang J, Shen H, Liu X, Zhang X, Chu PK. Antibacterial surface design of titanium-based biomaterials for enhanced bacteria-killing and cell-assisting functions against periprosthetic joint infection. ACS Appl Mater Interfaces. 2016;8(17):11162.

    Article  CAS  Google Scholar 

  12. Wu Q, Li J, Zhang W, Qian H, She W, Pan H, Wen J, Zhang X, Liu X, Jiang X. Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating. J Mater Chem B. 2014;2:6738.

    Article  CAS  Google Scholar 

  13. Jin G, Cao H, Qiao Y, Meng F, Zhu H, Liu X. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf B. 2014;117:158.

    Article  CAS  Google Scholar 

  14. Liao Y, Brandt BW, Li J, Crielaard W, Loveren CV, Deng DM. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol. 2017;9(1):1344509.

    Article  Google Scholar 

  15. Wang XJ, Liu HY, Ren X, Sun HY, Zhu LY, Ying XX, Hu SH, Qiu ZW, Wang LP, Wang XF, Ma GW. Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications. Colloids Surf B. 2015;136:752.

    Article  CAS  Google Scholar 

  16. Perez-Jorge C, Arenas MA, Conde A, Hernández-Lopez JM, Damborenaa JJ, Fisher S, Hunt AMA, Esteban J, James G. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine. J Mater Sci Mater Med. 2017;28:8.

  17. Ge X, Leng Y, Bao C, Xu SL, Wang R, Ren F. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res Part A. 2010;95A(2):588.

    Article  CAS  Google Scholar 

  18. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35(25):6758.

    Article  CAS  Google Scholar 

  19. Guo G, Zhou H, Wang Q, Wang J, Tan J, Li J, Jin P, Shen H. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens. Nanoscale. 2016;9(2):875.

    Article  Google Scholar 

  20. Canullo L, Micarelli C, Lembo-Fazio L, Iannello G, Clementini M. Microscopical and microbiologic characterization of customized titanium abutments after different cleaning procedures. Clin Oral Impl Res. 2014;25(3):328.

    Article  Google Scholar 

  21. Duske K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, Jablonowski L, Weltmann KD, Kocher T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol. 2012;39(4):400.

    Article  CAS  Google Scholar 

  22. Koban I, Duske K, Jablonowski L, Schröder K, Nebe B, Sietmann R, Weltmann KD, Hübner NO, Kramer A, Kocher T. Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle. Plasma Process Polym. 2011;8(10):975.

  23. Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R. 2002;36(5–6):143.

    Article  Google Scholar 

  24. Chen M, Zhang Y, Fu S, Yang L, Wang X, Wang Q, Qin G, Chen D, Zhang E. Effect of fluorination/oxidation level of nano-structured titanium on the behaviors of bacteria and osteoblasts. Appl Surf Sci. 2020;502:144077.1.

    Article  Google Scholar 

  25. Vassallo E, Pedroni M, Silvetti T, Morandi S, Toffolatti S, Angella G, Brasca M. Bactericidal performance of nanostructured surfaces by fluorocarbon plasma. Mater Sci Eng C. 2017;80:117.

    Article  CAS  Google Scholar 

  26. Marciano FR, Lima-Oliveira DA, Da-Silva NS, Corat EJ, Trava-Airoldi VJ. Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surf Coat Technol. 2010;204(18–19):2986.

    Article  CAS  Google Scholar 

  27. Ishihara M, Kosaka T, Nakamura T, Tsugawa K, Hasegawa M, Kokai F, Koga Y. Antibacterial activity of fluorine incorporated DLC films, Diamond Relat. Mater. 2006;15(4–8):1011.

    CAS  Google Scholar 

  28. Geng H, Wang T, Cao H, Zhu H, Di Z, Liu X. Antibacterial ability, cytocompatibility and hemocompatibility of fluorinated grapheme. Colloids Surf B. 2019;173:681.

    Article  CAS  Google Scholar 

  29. Choi M, Park S, Park K, Jeong H, Hong J. Nitric oxide delivery using biocompatible perfluorocarbon microemulsion for antibacterial effect. ACS Biomater Sci Eng. 2019;5(3):1378.

    Article  CAS  Google Scholar 

  30. Chen M, Li H, Wang X, Qin G, Zhang E. Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification. Appl Surf Sci. 2019;463:261.

    Article  CAS  Google Scholar 

  31. Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174.

    Article  CAS  Google Scholar 

  32. Zhang E, Fu S, Wang R, Li H, Liu Y, Ma Z, Liu G, Zhu C, Qin G, Chen D. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    Article  CAS  Google Scholar 

  33. Lee EJ, Kim JW, Lee WJ. Reactive ion etching mechanism of RuO2 thin films in oxygen plasma with the addition of CF4, Cl2, and N2. Jpn J Appl Phys. 1998;37(5R):2634.

    Article  CAS  Google Scholar 

  34. Fracassi F, d’Agostino R. Chemistry of titanium dry etching in fluorinated and chlorinated gases. Pure Appl Chem. 1992;64(5):703.

    Article  CAS  Google Scholar 

  35. Xu LC, Siedlecki CA. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomed Mater. 2014;9(3):035003.

    Article  CAS  Google Scholar 

  36. Zhou J, Li B, Zhao L, Zhang L, Han Y. F-doped micropore/nanorod hierarchically patterned coatings for improving antibacterial and osteogenic activities of bone implants in bacteria-infected cases. ACS Biomater Sci Eng. 2017;3(7):1437.

    Article  CAS  Google Scholar 

  37. Sutton SVW, Bender GR, Marquis RE. Fluoride inhibition of proton-translocating ATPases of oral bacteria. Infect Immun. 1987;55(11):2597.

    Article  CAS  Google Scholar 

  38. Zheng H, Liu L, Meng F, Cui Y, Li Z, Oguzie EE, Wang F. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base. J Mater Sci Technol. 2021;84:86.

    Article  Google Scholar 

  39. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7(5):2015.

    Article  CAS  Google Scholar 

  40. Wang G, Jin W, Qasim AM, Gao A, Peng X, Li W, Feng H, Chu PK. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials. 2017;124:25.

    Article  CAS  Google Scholar 

  41. Amii H, Uneyama K. C-F bond activation in organic synthesis. Chem Rev. 2009;109(5):2119.

    Article  CAS  Google Scholar 

  42. Everett ET. Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res. 2011;90(5):552.

    Article  CAS  Google Scholar 

  43. Wu S, Xia B, Mai S, Feng Z, Wang X, Liu Y, Liu R, Li Z, Xiao Y, Chen Z, Chen Z. Sodium fluoride under dose range of 2.4–24 μM, a promising osteoimmunomodulatory agent for vascularized bone formation. ACS Biomater Sci Eng. 2019;5(2):817.

    Article  CAS  Google Scholar 

  44. Lau KHW, Baylink DJ. Molecular mechanism of action of fluoride on bone cells. J Bone Miner Res. 1998;13(11):1660.

    Article  CAS  Google Scholar 

  45. Lavenus S, Ricquier JC, Louarn G, Layrolle P. Cell interaction with nanopatterned surface of implants. Nanomedicine. 2010;5(6):937.

    Article  CAS  Google Scholar 

  46. Civitelli R. Cell–cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys. 2008;473(2):188.

    Article  CAS  Google Scholar 

  47. Qin H, Cao H, Zhao Y, Jin G, Cheng M, Wang J, Jiang Y, An Z, Zhang X, Liu X. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. ACS Appl Mater Interfaces. 2015;7(20):10785.

    Article  CAS  Google Scholar 

  48. Gupta A, Bastiampillai T, Adams M, Nelson A, Nance M. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(10):1588.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52001122, 51801064 and 51961012), Jiangxi Outstanding Young Talents Program (No. 20192BCB23014), and Jiangxi Key Research and Development Program (No. 20203BBE53050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mian Chen or Jian Hu.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, XQ., Zhang, EL. et al. Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification. Rare Met. 41, 689–699 (2022). https://doi.org/10.1007/s12598-021-01808-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01808-y

Keywords

Navigation