Skip to main content
Log in

Improved magnetic anisotropy of Co-based multilayer film with nitrogen dopant

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Modulating the magnetic anisotropy of ferromagnetic thin films is crucial for constructing high-density and energy efficient magnetic memory devices. Ta/W(N)/Co/Pt multilayers were deposited on silicon substrates by magnetron sputtering at room temperature. The influences of N dopant on the magnetic anisotropy of the multilayers were investigated by preparing the sample with N incorporation. The results indicate that when sputtering W target with only argon gas (Ar), Ta/W/Co/Pt sample shows in-plane magnetic anisotropy (IMA). When sputtering W target at a different amount of N2 and Ar atmosphere, it can induce perpendicular magnetic anisotropy (PMA) for proper N-doped Ta/W(N)/Co/Pt sample. When the gas flow ratio of Ar:N2 is 16:6, the effective magnetic anisotropy constant reach its maximum value of 1.68 × 105 J·m−3, which enhanced by about 400% than our past works (annealing treatment is necessary to induce PMA in Pt/Co/MgO system). X-ray diffraction (XRD) and X-ray reflection (XRR) results demonstrate that N dopants can effectively promote the formation of β-W phase and reduce the roughness of W(N)/Co interface, which are beneficial for PMA. X-ray electron spectroscopy (XPS) analysis reveals that N doping redistributes Co charges, nitrogen ions participate in electron allocation of Co and attract some electrons of Co to form orbital hybridization between Co 3d and N 2p. This may be another important reason for the PMA formation.

Graphic abstract

摘要

调控铁磁薄膜的磁各向异性对构建高密度、低能耗磁存储器件的至关重要。本工作利用磁控溅射系统在室温下制备了Ta/W(N)/Co/Pt多层膜, 研究了氮的掺杂对薄膜磁各向异性的影响。实验结果表明 : 在W层沉积时未通入氮气制备的Ta/W/Co/Pt样品在制备态下呈现面内磁各向异性 (IMA) ; 而在W层沉积时适当的通入氮气, 可以有效地促进样品由面内磁各向异性向垂直磁各向异性 (PMA) 转化。当氩气和氮气比 (简称氩氮比) Q=16:6时, 无需经过退火处理, 在制备态下样品的磁各向异性常数Keff高达1.68×106 erg/cm3。此性能比我们之前报道的Pt/Co/MgO体系提升了约4倍 (需退火处理才呈现PMA, 约为0.4×106 erg/cm3)。通过X射线衍射 (XRD) 和X射线反射 (XRR) 测试分析发现在制备W层时适当的氮掺杂有利于β-W相的形成, 并且降低了W(N)/Co的界面粗糙度, 这有利于样品垂直磁各向异性的产生。另外, 根据X射线衍射 (XRD) 和X射线反射 (XRR) 结果可知N的掺杂有效促进β-W的形成并降低W/Co(N)的界面粗糙度, 从而有利于PMA的产生。X射线光电子能谱 (XPS) 测试结果推测, 氮的掺杂使得W/Co界面上Co原子的电荷重新分布, 氮离子参与了Co的电子分配, 吸引Co的部分电子形成Co 3d和N 2p轨道杂化, 从而调节了W(N)/Co界面处电子的轨道杂化状, 这可能是样品由面内磁各向异性向垂直磁各向异性转变的另一个重要原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du ZF, Huang Y, Qin XL. Research progress in nano-magnetic thin films. Ordnance Mater Sci Eng. 2007;30:75.

    Google Scholar 

  2. Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189.

    Article  CAS  Google Scholar 

  3. Yang F, Liu W, Zhang ZD. Magnetic properties of sputtered anisotropic PrFeB thin films with different structures and antiferromagnetic materials. Rare Met. 2016;35(12):926.

    Article  CAS  Google Scholar 

  4. Miao J, Jiang Y. Electric field control of spin transport behaviors in rare metal compounds. Chin Rare Metals. 2017;41(5):487.

    Google Scholar 

  5. Ju HL, Li BH, Wu ZF, Zhang F, Liu S, Yu GH. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Phys Sin. 2015;64(9):097501.

    Google Scholar 

  6. Cao Y, Li MH, Yang K, Chen X, Yang G, Liu QQ, Yu GH. Enhancement of post-annealing stability in Co/Ni multilayers with perpendicular magnetic anisotropy by Au insertion layers. Rare Met. 2016;35(10):779.

    Article  CAS  Google Scholar 

  7. Liu S, Yu GH, Yang MY, Ju HL, Li BH, Chen XB. Co/Pt multilayer-based pseudo spin valves with perpendicular magnetic anisotropy. Rare Met. 2014;33(6):646.

    Article  CAS  Google Scholar 

  8. Zutic I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323.

    Article  CAS  Google Scholar 

  9. Lu XP, Ju HL, Liu S, Xi JF, Li BH. Perpendicular magnetic anisotropy and thermal stability in CoSiB/Pd multilayers. Chin Rare Metals. 2018;42(10):1054.

    Google Scholar 

  10. Zhu ZY, Meng L, Chen L. Strain-induced martensitic trans-formation in biomedical Co-Cr-W-Ni alloys. Rare Met. 2020;39(3):241.

    Article  CAS  Google Scholar 

  11. Yu GH, Peng WL, Zhang JY. Progress in oxygen behaviors in two-dimensional thin films. Rare Met. 2017;36(3):155.

    Article  CAS  Google Scholar 

  12. Liu N, Wang H, Zhu T. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Phys Sin. 2012;61(16):517.

    Google Scholar 

  13. Peng WL, Zhang JY, Feng GN, Xu XL, Yang C, Jia YL, Yu GH. Enhancement of spin-orbit torque via interfacial hydrogen and oxygen ion manipulation. Appl Phys Lett. 2019;115(9):092402.

    Article  Google Scholar 

  14. An GG, Lee JB, Yang SM, Park HS, Chung WS, Park JG, Hong JP. Highly enhanced perpendicular magnetic anisotropic features in a CoFeB/MgO free layer via WN diffusion barrier. Acta Mater. 2016;110:217.

    Article  CAS  Google Scholar 

  15. Yang SM, Lee JB, An GG, Kim J, Chung W, Hong J. Thermally stable perpendicular magnetic anisotropy features of Ta/TaOx/Ta/CoFeB/MgO/W stacks via TaOx underlayer insertion. J App Phys. 2014;116(11):1488.

    Google Scholar 

  16. Klein BM, Birman JL. Theory of soft optic modes and phase transitions in β-W structure transition-metal alloys. Phys Rev Lett. 1970;25(15):1014.

    Article  CAS  Google Scholar 

  17. Bauer GEW, Saitoh E, van Wees BJ. Spin Caloritronics. Nat Mater. 2012;11:391.

    Article  CAS  Google Scholar 

  18. Scheunert G, Heinonen O, Hardeman R, Lapicki A, Gubbins M, Bowman RM. A review of high magnetic moment thin films for microscale and nanotechnology applications. Appl Phys Rev. 2016;3(1):011301.

    Article  Google Scholar 

  19. Xu JJ, Li W, Hou YL. Two-dimensional magnetic nanostructures. Trends Chem. 2020;2(2):163.

    Article  CAS  Google Scholar 

  20. Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater. 2010;9(9):721.

    Article  CAS  Google Scholar 

  21. Wang WG, Li M, Hageman S, Chien CL. Electric-field-assisted switching in magnetic tunneljunctions. Nat Mater. 2012;11:64.

    Article  CAS  Google Scholar 

  22. Feng C, Wang SR, Yin L, Li XJ, Yao MK, Yang F, Tang XL, Wang L, Mi WB, Yu GH. Significant strain-induced orbital reconstruction and strong interfacial magnetism in TiNi(Nb)/ferromagnet/oxide heterostructures via oxygen manipulation. Adv Func Mater. 2018;28(37):1803335.

    Article  Google Scholar 

  23. Meng H, Lum WH, Sbiaa R, Lua SYH, Tan HK. Annealing effects on CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. J App Phys. 2011;110:033904.

    Article  Google Scholar 

  24. Bandiera S, Sousa RC, Rodmacq B, Dieny B. Enhancement of perpendicular magnetic anisotropy through reduction of Co-Pt interdiffusion in (Co/Pt) multilayers. Appl Phys Lett. 2012;100(14):210.

    Article  Google Scholar 

  25. Li Q, Li L, Zhou W, Chen J, Zhang SY, Cai JH. Magnetic anisotropy in [Pt/Co]4/MgO/[Co/Pt]2 multilayers. Mater Sci Forum, Switz. 2019;944:625.

    Article  Google Scholar 

  26. Chen X, Feng C, Wu ZL, Yang F, Liu Y, Jiang SL, Li MH, Yu GH. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films. Appl Phys Lett. 2014;104(5):052413.

    Article  Google Scholar 

  27. Li ZR, Mi WB, Bai HL. The contribution of distinct response characteristics of Fe atoms to switching of magnetic anisotropy in Fe4N/MgO heterostructures. Appl Phys Lett. 2018;113(13):132401.

    Article  Google Scholar 

  28. Guo BD, Liu Q, Chen E, Zhu HW, Fang LA, Gong JR. Controllable N-doping of graphene. ACS Nano Lett. 2010;10(12):4975.

    Article  CAS  Google Scholar 

  29. Kim JH, Lee JB, An GG, Yang SM, Chung WS, Park HS, Hong JP. Ultrathin W space layer-enabled thermal stability enhancement in a perpendicular MgO/CoFeB/W/CoFeB/MgO recording frame. Sci Rep. 2015;5:16903.

    Article  CAS  Google Scholar 

  30. Kim DH, Park KW, Park BG. Enhanced tunnel magnetoresistance and electric-field effect in CoFeB/MgO/CoFeB perpendicular tunnel junctions with W underlayer. Curr Appl Phys. 2017;17(7):962.

    Article  Google Scholar 

  31. Shen W, Mazumdar D, Zou X, Liu XY, Schrag BD, Xiao G. Effect of film roughness in MgO-based magnetic tunnel junctions. Appl Phys Lett. 2006;88(18):182508.

    Article  Google Scholar 

  32. Vadalá M, Zhernenkov K, Wolff M, Toperverg BP, Westerholt K, Zabel H, Wisniowski P, Cardoso S, Freitas PP. Structural characterization and magnetic profile of annealed CoFeB/MgO multilayers. J Appl Phys. 2009;105:113911.

    Article  Google Scholar 

  33. Wanger CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp.: Eden Prairie, Minnesota; 1979. 190.

    Google Scholar 

  34. Fang XZ, Jiao L, Yu SH, Jiang HL. Metal-organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. Chem Sus Chem. 2017;10(15):3019.

    Article  CAS  Google Scholar 

  35. Chen ZR, Pan CJ, Wang N, Qiu MX, Lin T, Liu J, Li SP, Han PG, Shi J, Ando K. Manipulation of perpendicular exchange bias and spin-orbit torques via MgO in Pt/Co/MgO films. J Magn Magn Mater. 2020;507:166822.

    Article  CAS  Google Scholar 

  36. Gweon HK, Lim SH. Evolution of strong second-order magnetic anisotropy in Pt/Co/MgO trilayers by post-annealing. Appl Phys Lett. 2020;117(8):082403.

    Article  CAS  Google Scholar 

  37. Richter K, Varga R. Asymmetric bubble expansion in Pt/Co/MgO layers with Dzyaloshinskii-Moriya interaction. Acta Phys Pol A. 2020;137(5):741.

    Article  CAS  Google Scholar 

  38. Shi H, Li MH, Fang S, Zhou WH, Yang C, Jiang YQ, Wang DW, Yu GH. Characterization of the interfacial structure and perpendicular magnetic anisotropy in CoFeB–MgO structures with different buffer layers. Surf Interface Anal. 2018;50:59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFB2005800), the National Science Foundation of China (Nos. 51871017, 51871018 and 52071025), Beijing Natural Science Foundation (No. 2192031), the Fundamental Research Funds for the Central Universities (No. FRF-TP-19-011B1) and the Foundation of Beijing Key Laboratory of Metallic Materials and Processing for Modern Transportation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Lan Xu or Jiao Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LR., Xu, XL., Jia, YL. et al. Improved magnetic anisotropy of Co-based multilayer film with nitrogen dopant. Rare Met. 40, 2855–2861 (2021). https://doi.org/10.1007/s12598-021-01732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01732-1

Keywords

Navigation