Skip to main content
Log in

Photocatalytic activity of perovskite SrTiO3 catalysts doped with variable rare earth ions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, 15 types of rare earth (Re) ions, including Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+ and Lu3+ doped perovskite SrTiO3 powders were synthesized by sol–gel method. The influence of Re ions doping on the crystal structure, morphology and optical property as well as the photocatalytic activity for the photodegradation of rhodamine B (RhB) was investigated in detail when the synthesized Re ions doped SrTiO3 powders were served as catalysts. The presented results revealed that the crystal structure is invariable, whereas the morphology and the optical bandgap are variable for the resultant SrTiO3 powders when different Re ions were incorporated into the SrTiO3 lattice. The relatedness between the morphology, optical property and photocatalytic activity of the synthesized SrTiO3 catalysts doped with variable Re ions were analyzed deeply, providing an insight into the influence factors on the photocatalytic activity of catalysts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69.

    Article  CAS  Google Scholar 

  2. Zou ZG, Ye JH, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature. 2001;414(6864):62.

    Article  Google Scholar 

  3. Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110(11):6503.

    Article  CAS  Google Scholar 

  4. Zhao X, Li B, Wei C, Wang X, Zhou J, Lou X. Flower-like Ag/ZnO synthesized by one pot hydrothermal method at low temperature with enhanced sunlight photocatalytic performance. Chin J Rare Metals. 2019;43(6):621.

    Google Scholar 

  5. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J, Zhu H. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 2010;12(3):414.

    Article  CAS  Google Scholar 

  6. Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller JO, Schloegl R, Carlsson JM. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Mater Chem. 2008;18(41):4893.

    Article  CAS  Google Scholar 

  7. Gaya UI, Abdullah AH. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Photochem Photobiol C Photochem Rev. 2008;9(1):1.

    Article  CAS  Google Scholar 

  8. Asahi R, Morikawa T, Irie H, Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. 2014;114(19):9824.

    Article  CAS  Google Scholar 

  9. Zhang J, Wu Y, Xing M, Leghari SAK, Sajjad S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci. 2010;3(6):715.

    Article  Google Scholar 

  10. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269.

    Article  CAS  Google Scholar 

  11. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159.

    Article  CAS  Google Scholar 

  12. Ran J, Ma TY, Gao G, Du XW, Qiao SZ. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H-2 production. Energy Environ Sci. 2015;8(12):3708.

    Article  CAS  Google Scholar 

  13. Zhang S, Wang D, Song L. A novel F-doped BiOCl photocatalyst with enhanced photocatalytic performance. Mater Chem Phys. 2016;173:298.

    Article  CAS  Google Scholar 

  14. Ren J, Zhao D, Liu H, Zhong Y, Ning J, Zhang Z, Zheng C, Hu Y. Electrospinning preparation of Sn4+-doped BiFeO3 nanofibers as efficient visible-light-driven photocatalyst for O2 evolution. J Alloy Compd. 2018;766:274.

    Article  CAS  Google Scholar 

  15. Kebede WL, Kuo DH, Zeleke MA, Ahmed KE. A novel Sb-doped Mo(O, S)3 oxy-sulfide photocatalyst for degradation of methylene blue dye under visible light irradiation. J Alloy Compd. 2019;797:986.

    Article  CAS  Google Scholar 

  16. Yu XY, He JF, Zhang YM, Hu JM, Chen FM, Wang YZ, He GN, Liu JM, He QY. Effective photodegradation of tetracycline by narrow-energy band gap photocatalysts La2-xSrxNiMnO6 (x= 0, 0.05, 0.10, and 0.125). J Alloys Compd. 2019;806:451.

    Article  CAS  Google Scholar 

  17. Grabowska E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Appl Catal B. 2016;186:97.

    Article  CAS  Google Scholar 

  18. Patial S, Hasija V, Raizada P, Singh P, Khan Singh AAP, Asiri AM. Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario. Environ Chem Eng. 2020;8(3):103791.

    Article  CAS  Google Scholar 

  19. Bi Y, Ehsan MF, Huang Y, Jin J, He T. Synthesis of Cr-doped SrTiO3 photocatalyst and its application in visible-light-driven transformation of CO2 into CH4. CO2 Util. 2015;12:43.

    Article  CAS  Google Scholar 

  20. Zhou X, Shi J, Li C. Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (metal = Mn, Fe, and Co). Phys Chem C. 2011;115(16):8305.

    Article  CAS  Google Scholar 

  21. Jia A, Liang X, Su Z, Zhu T, Liu S. Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. Hazard Mater. 2010;178(1):233.

    Article  CAS  Google Scholar 

  22. Wang J, Yin S, Zhang Q, Saito F, Sato T. Influences of the factors on photocatalysis of fluorine-doped SrTiO3 made by mechanochemical method. Solid State Ion. 2004;172(1):191.

    Article  CAS  Google Scholar 

  23. Zheng JQ, Zhu YJ, Xu JS, Lu BQ, Qi C, Chen F, Wu J. Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates. Mater Lett. 2013;2013(100):62.

    Article  Google Scholar 

  24. Shi J, Ye J, Ma L, Ouyang S, Jing D, Guo L. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem A Eur J. 2012;18(24):7543.

    Article  CAS  Google Scholar 

  25. Dong Y, Zou X, Sun Y, Tong Z, Jiang Z. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Front Chem Sci Eng. 2018;12(3):440.

    Article  Google Scholar 

  26. Tonda S, Kumar S, Anjaneyulu O, Shanker V. Synthesis of Cr and La-codoped SrTiO3 nanoparticles for enhanced photocatalytic performance under sunlight irradiation. Phys Chem Chem Phys. 2014;16(43):23819.

    Article  CAS  Google Scholar 

  27. Abdi M, Mahdikhah V, Sheibani S. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt Mater. 2020;102:109803.

    Article  CAS  Google Scholar 

  28. Opoku F, Govender KK, van Sittert CGCE, Govender PP. Enhancing charge separation and photocatalytic activity of cubic SrTiO3 with perovskite-type materials MTaO3 (M=Na, K) for environmental remediation: a first-principles study. ChemistrySelect. 2017;2(22):6304.

    Article  CAS  Google Scholar 

  29. Li F, Yu K, Lou LL, Su Z, Liu S. Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst. Mater Sci Eng B. 2010;172(2):136.

    Article  CAS  Google Scholar 

  30. Saison T, Chemin N, Chaneac C, Durupthy O, Ruaux V, Mariey L, Mauge F, Beaunier P, Jolivet JP. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J Phys Chem C. 2011;115(13):5657.

    Article  CAS  Google Scholar 

  31. Herrmann JM. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B. 2010;99(3):461.

    Article  CAS  Google Scholar 

  32. Zhuang J, Dai W, Tian Q, Li Z, Xie L, Wang J, Liu P, Shi X, Wang D. Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir. 2010;26(12):9686.

    Article  CAS  Google Scholar 

  33. Wang S, Xing S, Shi Z, He J, Han Q, Li M. Electrostatic polypyridine–ruthenium(ii)⋯decatungstate dyads: structures, characterizations and photodegradation of dye. RSC Adv. 2017;7(29):18024.

    Article  CAS  Google Scholar 

  34. Zhang YY, Wu B, Tang YX, Qi DP, Wang N, Wang XT, Ma XL, Sum TC, Chen XD. Prolonged electron lifetime in ordered TiO2 mesophyll cell-like microspheres for efficient photocatalytic water reduction and oxidation. Small. 2016;12(17):2291.

    Article  CAS  Google Scholar 

  35. Guo Q, Mao J, Huang J, Wang Z, Zhang Y, Hu J, Dong J, Sathasivam S, Zhao Y, Xing G, Pan H, Lai Y, Tang Y. Reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations. Small. 2020;16(8):1907029.

    Article  CAS  Google Scholar 

  36. Jiang ZL, Tang YX, Tay QL, Zhang YY, Malyi OI, Wang DP, Deng JY, Lai YK, Zhou HF, Chen XD, Dong ZL, Chen Z. Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv Energy Mater. 2013;3(10):1368.

    Article  CAS  Google Scholar 

  37. Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Func Mater. 2013;23(29):3693.

    Article  CAS  Google Scholar 

  38. Barbero N, Vione D. Why dyes should not be used to test the photocatalytic activity of semiconductor oxides. Environ Sci Technol. 2016;50(5):2130.

    Article  CAS  Google Scholar 

  39. Wang ZT, Xu JL, Zhou H, Zhang X. Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 2019;38(5):459.

    Article  CAS  Google Scholar 

  40. Xu H, Liu SQ, Zhou S, Yuan TZJ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Met. 2018;37(9):750.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (No. 51777138), the Natural Science Foundation of Tianjin City (Nos. 18JCZDJC99700, 18JCYBJC87400 and 18JCQNJC73900) and the Scientific Developing Foundation of Tianjin Education Commission (No. 2018KJ130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Yong Mao or Da-Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YX., Ma, WQ., Chen, JJ. et al. Photocatalytic activity of perovskite SrTiO3 catalysts doped with variable rare earth ions. Rare Met. 40, 1077–1085 (2021). https://doi.org/10.1007/s12598-020-01674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01674-0

Keywords

Navigation