Skip to main content

Advertisement

Log in

A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission [16]. Copyright (2007) The American Association for the Advancement of Science

Fig. 3
Fig. 4

Reprinted with permission [19]. Copyright (2015) Springer Nature

Fig. 5
Fig. 6

Reprinted with permission [43]. Copyright (2014) The Royal Society of Chemistry

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.

    Google Scholar 

  2. Yang C, Gao K, Zhang X, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459.

    CAS  Google Scholar 

  3. Ji Y, Weng S, Li X, Zhang Q, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01369-6.

    Article  Google Scholar 

  4. Wang Y, Kong B, Zhao D, Wang H, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today. 2017;15:26.

    CAS  Google Scholar 

  5. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.

    CAS  Google Scholar 

  6. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.

    CAS  Google Scholar 

  7. Chia X, Eng AYS, Ambrosi A, Tan SM, Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev. 2015;115(21):11941.

    CAS  Google Scholar 

  8. Geng X, Zhang Y, Han Y, Li J, Yang L, Benamara M, Chen L, Zhu H. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 2017;17(3):1825.

    CAS  Google Scholar 

  9. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544(7648):80.

    CAS  Google Scholar 

  10. Liu Q, Wang W, Yang Y, Liu X, Xu S. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019;38(1):1.

    Google Scholar 

  11. Sun HH, Wang JG, Zhang Y, Hua W, Li YY, Liu HY. Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J Mater Chem A. 2018;6(27):13419.

    CAS  Google Scholar 

  12. He J, Li P, Lv W, Wen K, Chen Y, Zhang W, Li Y, Qin W, He W. Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim Acta. 2016;215:12.

    CAS  Google Scholar 

  13. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344.

    CAS  Google Scholar 

  14. Yu B, Chen Y, Wang Z, Chen D, Wang X, Zhang W, He J, He W. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J Power Sour. 2020;447:227364.

    CAS  Google Scholar 

  15. Yu B, Yang D, Hu Y, He J, Chen Y, He W. Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage. Small Methods. 2019;3(2):1800287.

    Google Scholar 

  16. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.

    CAS  Google Scholar 

  17. Brown DE, Mahmood MN, Man MCM, Turner AK. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta. 1984;29(11):1551.

    CAS  Google Scholar 

  18. Fang M, Gao W, Dong G, Xia Z, Yip S, Qin Y, Qu Y, Ho JC. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy. 2016;27:247.

    CAS  Google Scholar 

  19. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8(1):15437.

    CAS  Google Scholar 

  20. Qi F, Li P, Chen Y, Zheng B, Liu X, Lan F, Lai Z, Xu Y, Liu J, Zhou J, He J, Zhang W. Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method. Vacuum. 2015;119:204.

    CAS  Google Scholar 

  21. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308.

    CAS  Google Scholar 

  22. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963.

    CAS  Google Scholar 

  23. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807.

    CAS  Google Scholar 

  24. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.

    CAS  Google Scholar 

  25. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222.

    CAS  Google Scholar 

  26. Bonde J, Moses PG, Jaramillo TF, Nørskovb JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfide. Faraday Discuss. 2008;140:9.

    Google Scholar 

  27. Tsai C, Chan K, Nørskov JK, Abild-Pedersen F. Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol. 2015;5(1):246.

    CAS  Google Scholar 

  28. Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, Zeng X, Xie Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale. 2014;6(14):8359.

    CAS  Google Scholar 

  29. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc. 2013;135(47):17881.

    CAS  Google Scholar 

  30. Yan Y, Ge X, Liu Z, Wang JY, Lee JM, Wang X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale. 2013;5(17):7768.

    CAS  Google Scholar 

  31. Zhu H, Du M, Zhang M, Zou M, Yang T, Fu Y, Yao J. The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. J Mater Chem A. 2014;2(21):7680.

    CAS  Google Scholar 

  32. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater. 2014;26(7):2344.

    CAS  Google Scholar 

  33. Bian X, Zhu J, Liao L, Scanlon MD, Ge P, Ji C, Girault HH, Liu B. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution. Electrochim Commun. 2012;22:128.

    CAS  Google Scholar 

  34. Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale. 2014;6(11):5624.

    CAS  Google Scholar 

  35. Yan Y, Xia BY, Li N, Xu Z, Fisher A, Wang X. Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. J Mater Chem A. 2015;3(1):131.

    CAS  Google Scholar 

  36. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano. 2014;8(5):4940.

    CAS  Google Scholar 

  37. Zhang J, Wang T, Liu P, Liu S, Dong R, Zhuang X, Chen M, Feng X. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ Sci. 2016;9(9):2789.

    CAS  Google Scholar 

  38. Zang Y, Niu S, Wu Y, Zheng X, Cai J, Ye J, Xie Y, Liu Y, Zhou J, Zhu J, Liu X, Wang G, Qian Y. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun. 2019;10(1):1217.

    Google Scholar 

  39. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J. Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017;37:74.

    CAS  Google Scholar 

  40. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6701.

    Google Scholar 

  41. Tsai C, Chan K, Abild-Pedersen F, Norskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156.

    CAS  Google Scholar 

  42. Kong D, Wang H, Cha J, Pasta M, Koski K, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013;13(3):1341.

    CAS  Google Scholar 

  43. Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H, Yan Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J Mater Chem A. 2014;2(16):5597.

    CAS  Google Scholar 

  44. Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H, Zeng M, Xie L, Liu Z, Li Y. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015;5(4):2213.

    CAS  Google Scholar 

  45. Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311.

    Google Scholar 

  46. Zhao G, Wang X, Wang S, Rui K, Chen Y, Yu H, Ma J, Dou SX, Sun W. Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting. Chem Asian J. 2019;14(2):301.

    Google Scholar 

  47. Zhao G, Li P, Rui K, Chen Y, Dou SX, Sun W. CoSe2/MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem Eur J. 2018;24(43):11158.

    CAS  Google Scholar 

  48. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed. 2012;51(51):12703.

    CAS  Google Scholar 

  49. Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci. 2014;7(1):387.

    CAS  Google Scholar 

  50. Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano. 2016;10(9):8851.

    CAS  Google Scholar 

  51. Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 2016;10(12):11337.

    CAS  Google Scholar 

  52. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015;6(1):6512.

    CAS  Google Scholar 

  53. Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(25):6407.

    CAS  Google Scholar 

  54. Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5590.

    CAS  Google Scholar 

  55. Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci. 2016;7(5):3399.

    CAS  Google Scholar 

  56. Prins R, Bussell ME. Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett. 2012;142(12):1413.

    CAS  Google Scholar 

  57. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci. 2014;7(8):2624.

    CAS  Google Scholar 

  58. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater. 2014;26(32):5702.

    CAS  Google Scholar 

  59. Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem Int Ed. 2016;55(41):12854.

    CAS  Google Scholar 

  60. Zhang X, Zhou F, Pan W, Liang Y, Wang R. General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater. 2018;28(43):1804600.

    Google Scholar 

  61. Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(20):5575.

    CAS  Google Scholar 

  62. Park H, Zhang Y, Scheifers JP, Jothi PR, Encinas A, Fokwa BPT. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J Am Chem Soc. 2017;139(37):12915.

    CAS  Google Scholar 

  63. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew Chem Int Ed. 2018;57(2):496.

    CAS  Google Scholar 

  64. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed. 2012;51(25):6131.

    CAS  Google Scholar 

  65. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci. 2014;5(12):4615.

    CAS  Google Scholar 

  66. Xiong J, Cai W, Shi W, Zhang X, Li J, Yang Z, Feng L, Cheng H. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J Mater Chem A. 2017;5(46):24193.

    CAS  Google Scholar 

  67. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(51):19186.

    CAS  Google Scholar 

  68. Chang B, Yang J, Shao Y, Zhang L, Fan W, Huang B, Wu Y, Hao X. Bimetallic NiMoN nanowires with preferential reactive facet: an ultra-efficient bifunctional electrocatalyst for overall water splitting. Chemsuschem. 2018;11(18):3198.

    CAS  Google Scholar 

  69. Li X, Jiang Y, Jia L, Wang C. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J Power Sour. 2016;304:146.

    CAS  Google Scholar 

  70. Wu L, Wang X, Sun Y, Liu Y, Li J. Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale. 2015;7(16):7040.

    CAS  Google Scholar 

  71. Jin Y, Shen PK. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2015;3(40):20080.

    CAS  Google Scholar 

  72. Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater. 2016;28(19):3785.

    CAS  Google Scholar 

  73. Ren B, Li D, Jin Q, Cui H, Wang C. Integrated 3D self-supported Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. J Mater Chem A. 2017;5(46):24453.

    CAS  Google Scholar 

  74. Xie X, Yu R, Xue N, Bin Yousaf A, Du H, Liang K, Jiang N, Xu AW. P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A. 2016;4(5):1647.

    CAS  Google Scholar 

  75. Xu B, Sun Y, Chen Z, Zhao S, Yang X, Zhang H, Li C. Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2018;43(45):20721.

    CAS  Google Scholar 

  76. Ou Y, Tian W, Liu L, Zhang Y, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. J Mater Chem A. 2018;6(12):5217.

    CAS  Google Scholar 

  77. Hua W, Liu H, Wang JG, Wei B. Self-supported Ni(P, O)x·MoOx nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Nanomaterials. 2017;7(12):433.

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51772249 and 51821091), the Fundamental Research Funds for the Central Universities (Nos. G2017KY0308 and 3102019JC005), the Natural Science Foundation of Shaanxi Province (Nos. 2018JM5092 and 2019JLM-26), the Innovation Program for Talent (No. 2019KJXX-066) and the Post-doctoral Program of Shaanxi Province (No. 2018BSHTDZZ16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Sun, HH., Xu, F. et al. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 39, 335–351 (2020). https://doi.org/10.1007/s12598-020-01384-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01384-7

Keywords

Navigation