Skip to main content
Log in

Noncollinear spintronics and electric-field control: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention due to exotic physical phenomena. In this review, we first introduce two types of noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current and spin Hall effect without spin–orbit coupling in these noncollinear spin systems. Afterward, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin–orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Baibich MN, Broto JM, Fert A, Nguyen VD, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61(21):2472.

    CAS  Google Scholar 

  2. Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39(7):4828.

    CAS  Google Scholar 

  3. Julliere M. Tunneling between ferromagnetic flims. Phys Lett. 1975;54A(3):225.

    CAS  Google Scholar 

  4. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3(12):862.

    CAS  Google Scholar 

  5. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3(12):868.

    CAS  Google Scholar 

  6. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett. 2008;93(8):082508.

    Google Scholar 

  7. Katine JA, Albert FJ, Buhrman RA. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett. 2000;84(14):3149.

    CAS  Google Scholar 

  8. Albert FJ, Katine JA, Buhrman RA, Ralph DC. Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett. 2000;77(23):3809.

    CAS  Google Scholar 

  9. Borgea J, Gorinib C, Vignalec G, Raimondi R. Spin Hall and Edelstein effects in metallic films. Acta Phys Pol, A. 2015;127(2):457.

    Google Scholar 

  10. Jamali M, Narayanapillai K, Qiu XP, Loong LM, Manchon A, Yang H. Spin-orbit torques in Co/Pd multilayer nanowires. Phys Rev Lett. 2013;111(24):246602.

    Google Scholar 

  11. Miao XF, Hu SY, Xu F, Brück E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018;37(9):723.

    CAS  Google Scholar 

  12. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev Mod Phys. 2015;87(4):1213.

    Google Scholar 

  13. Qiu XP, Shi Z, Fan WJ, Zhou SM, Yang H. Characterization and manipulation of spin orbit torque in magnetic heterostructures. Adv Mater. 2018;30(17):1705699.

    Google Scholar 

  14. Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.

    Google Scholar 

  15. Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.

    CAS  Google Scholar 

  16. Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.

    CAS  Google Scholar 

  17. Belavin AA, Polyakov AM. Metastable state of two-dimensional isotropic ferromagnets. JETP Lett. 1975;22(10):503.

    Google Scholar 

  18. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241.

    CAS  Google Scholar 

  19. Moriya T. Critical fields of superconducting Sn, In and Ta. Phys Rev. 1960;120(7):91.

    CAS  Google Scholar 

  20. Rößler UK, Bogdanov AN, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442(7104):797.

    Google Scholar 

  21. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Topological Hall effect in the a phase of MnSi. Phys Rev Lett. 2009;102(18):186602.

    CAS  Google Scholar 

  22. Lee M, Kang W, Onose Y, Tokura Y, Ong NP. Unusual Hall effect anomaly in MnSi under pressure. Phys Rev Lett. 2009;102(18):186601.

    Google Scholar 

  23. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.

    Google Scholar 

  24. Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys. 2011;7(9):713.

    CAS  Google Scholar 

  25. Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106.

    CAS  Google Scholar 

  26. Ohuchi Y, Kozuka Y, Uchida M, Ueno K, Tsukazaki A, Kawasaki M. Topological Hall effect in thin films of the Heisenberg ferromagnet EuO. Phys Rev B. 2015;91(24):245115.

    Google Scholar 

  27. Lin YS, Grundy PJ, Giess EA. Bubble domains in magnetostatically coupled garnet films. Appl Phys Lett. 1973;23(8):485.

    CAS  Google Scholar 

  28. Garel T, Doniach S. Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet. Phys Rev B. 1982;26(1):325.

    Google Scholar 

  29. Suzuki T. A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films. J Magn Magn Mater. 1983;31–34(Part 2):1009.

    Google Scholar 

  30. Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108(1):017206.

    Google Scholar 

  31. Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater. 2019. https://doi.org/10.1038/s41563-019-0468-3.

    Article  Google Scholar 

  32. Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y, Kawasaki M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci Adv. 2016;2(7):e1600304.

    Google Scholar 

  33. Wang WB, Daniels MW, Liao ZL, Zhao YF, Wang J, Koster G, Rijnders G, Chang CZ, Xiao D, Wu WD. Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Nat Mater. 2019;18(10):1054.

    CAS  Google Scholar 

  34. Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2(3):287.

    Google Scholar 

  35. Hall EH. On the new action of magnetism on a permanent electric current. Phil Mag. 1880;10(63):301.

    Google Scholar 

  36. Chen H, Niu Q, MacDonald AH. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys Rev Lett. 2014;112(1):017205.

    Google Scholar 

  37. Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527(7577):212.

    CAS  Google Scholar 

  38. Kübler J, Felser C. Non-collinear antiferromagnets and the anomalous Hall effect. EPL. 2014;108(6):67001.

    Google Scholar 

  39. Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan BH. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J Phys. 2017;19(1):015008.

    Google Scholar 

  40. Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S. Evidence for magnetic Weyl fermions in a correlated metal. Nat Mater. 2017;16(11):1090.

    CAS  Google Scholar 

  41. Železný J, Zhang Y, Felser C, Yan BH. Spin-polarized current in noncollinear antiferromagnets. Phys Rev Lett. 2017;119(18):187204.

    Google Scholar 

  42. Zhang Y, Sun Y, Yang H, Železný J, Parkin SSP, Felser C, Yan BH. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys Rev B. 2017;95(7):075128.

    Google Scholar 

  43. Zhang Y, Železný J, Sun Y, Brink J, Yan BH. Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling. New J Phys. 2018;20(7):073028.

    Google Scholar 

  44. Nakatani Y, Hayashi Kanai S, Fukami S, Ohno H. Electric field control of Skyrmions in magnetic nanodisks. Appl Phys Lett. 2016;108(15):152403.

    Google Scholar 

  45. Ma C, Zhang XC, Xia J, Ezawa M, Jiang WJ, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu XX. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 2019;19(1):353.

    CAS  Google Scholar 

  46. White JS, Levatić I, Omrani AA, Egetenmeyer N, Prša K, Źvković I, Gavilano JL, Kohlbrecher J, Bartkowiak M, Berger H, Rønnow HM. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys-Condens Matter. 2012;24(43):432201.

    CAS  Google Scholar 

  47. Kruchkov AJ, White JS, Bartkowiak M, Živković I, Magrez A, Rønnow HM. Direct electric field control of the skyrmion phase in a magnetoelectric insulator. Sci Rep. 2018;8:10466.

    CAS  Google Scholar 

  48. Ohuchi Y, Matsuno J, Ogawa N, Kozuka Y, Uchida M, Tokura Y, Kawasaki M. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat Commun. 2018;9:213.

    Google Scholar 

  49. Qin Q, Liu L, Lin WN, Shu XY, Xie QD, Lim ZS, Li CJ, He SK, Chow GM, Chen JS. Emergence of topological Hall effect in a SrRuO3 single layer. Adv Mater. 2019;31(8):1807008.

    Google Scholar 

  50. Finger T, Senff D, Schmalz K, Schmidt W, Regnault LP, Becker P, Bohatỳ L, Braden M. Electric-field control of the chiral magnetism of multiferroic MnWO4 as seen via polarized neutron diffraction. Phys Rev B. 2010;81(5):054430.

    Google Scholar 

  51. Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnets above room temperature. Nat Electron. 2018;1(3):172.

    CAS  Google Scholar 

  52. Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.

    CAS  Google Scholar 

  53. Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B. 2008;78(18):184414.

    Google Scholar 

  54. Liu Z, Biegalski MD, Hsu SL, Shang S, Marker C, Liu J, Li L, Fan L, Meyer TL, Wong AT, Nichols JA, Chen D, You L, Chen Z, Wang K, Wang K, Ward TZ, Gai Z, Lee HN, Sefat AS, Lauter V, Liu ZK, Christen HM. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv Mater. 2016;28(1):118.

    CAS  Google Scholar 

  55. Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.

    Google Scholar 

  56. Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.

    CAS  Google Scholar 

  57. Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Christen HM, Salahuddin S, Bokor JB, Spaldin NA, Schlom DG, Ramesh R. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959.

    CAS  Google Scholar 

  58. Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivasava A, Dhar S, Venkatesan T, Ariando A. Metal-insulator transition in SrTiO3-x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.

    CAS  Google Scholar 

  59. Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando A. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces—the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.

    Google Scholar 

  60. Chen Z, Chen ZH, Liu ZQ, Holtz ME, Li CJ, Wang XR, Lü WM, Motapothula M, Fan LS, Turcaud JA, Dedon LR, Frederick C, Xu RJ, Gao R, N’Diaye AT, Arenholz E, Mundy JA, Venkatesan T, Muller DA, Wang LW, Liu J, Martin LW. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys Rev Lett. 2017;119(15):156801.

    Google Scholar 

  61. Liu ZQ, Li L, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.

    CAS  Google Scholar 

  62. Li CJ, Huang LS, Li T, Lü WM, Qiu XP, Huang Z, Liu ZQ, Zeng SW, Zhao YL, Zeng KY, Chen JS, Coey JMD, Ariando A, Venkatesan T. Untra thin BaTiO3 based ferroelectric tunneling junctions through interface engineering. Nano Lett. 2015;15(4):2568.

    CAS  Google Scholar 

  63. Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang DH, Noh WS, Park JH, Lee KJ, Lee HW, Yang H. Spin-orbit-torque engineering via oxygen manipulation. Nat Nanotechnol. 2015;10(4):333.

    CAS  Google Scholar 

  64. Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang XR, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando A, Cao W, Venkatesan T. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv Mater. 2017;29(24):1606165.

    Google Scholar 

  65. Zheng LM, Wang XR, Lü WM, Li CJ, Paudel TR, Liu ZQ, Huang Z, Zeng SW, Han K, Chen ZH, Qiu XP, Li MS, Yang S, Yang B, Chisholm MF, Martin LW, Pennycook SJ, Tysmbal EY, Coey JMD, Cao WW. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat Commun. 2018;9:1897.

    CAS  Google Scholar 

  66. Wang XR, Li CJ, Lü WM, Paudel TR, Leusink DP, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey JMD, Tsymbal EY, Ariando A, Hilgenkamp H. Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures. Science. 2015;349(6249):716.

    CAS  Google Scholar 

  67. Liu ZQ, Ming Y, Lü WM, Huang Z, Wang X, Zhang BM, Li CJ, Gopinadhan K, Zeng SW, Annadi A, Feng YP, Venkatesan T, Ariando A. Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices. Appl Phys Lett. 2012;101(22):223105.

    Google Scholar 

  68. Ziese M, Jin L, Lindfors-Vrejoiu I. Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO3 structure. J Phys Mater. 2019;2:034008.

    Google Scholar 

  69. Gu Y, Wei YW, Xu K, Zhang H, Wang F, Li F, Saleem MS, Chang CZ, Sun J, Song C, Feng J, Zhong X, Liu W, Zhang Z, Zhu J, Pan F. Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. J Phys D Appl Phys. 2019;52(40):404001.

    CAS  Google Scholar 

  70. Qiu XP, Yang DZ, Zhou SM, Chantrell R, O’Grady K, Nowak U, Du J, Bai XJ. Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys Rev Lett. 2008;101(14):147207.

    CAS  Google Scholar 

  71. Lü WM, Saha S, Wang XR, Liu ZQ, Gopinadhan K, Annadi A, Zeng SW, Huang Z, Bao BC, Cong CX, Venkatesan M, Yu T, Coey JMD, Ariando A, Venkatesan T. Long-range magnetic coupling across a polar insulating layer. Nat Commun. 2016;7:11015.

    Google Scholar 

  72. Qiu X, Legrand W, He P, Wu Y, Yu J, Ramaswamy R, Manchon A, Yang H. Enhanced spin-orbit torque via modulation of spin current absorption. Phys Rev Lett. 2016;117(21):217206.

    Google Scholar 

  73. Han K, Hu K, Li X, Huang K, Huang Z, Zeng S, Qi D, Ye C, Yang J, Xu H, Ariando A, Yi J, Lü W, Yan S, Wang XR. Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO3 and a water-dissolvable overlayer. Sci Adv. 2019;5(8):eaaw7286.

    Google Scholar 

  74. Kaspar Z, Surynek M, Zubac J, Krizek J, Novak V, Campion RP, Wornle MS, Gambardella P, Marti X, Nemec P, Wadley P, Wunderlich J, Tungwirth T, Olejnik K. High resistive unipolar-electrical and fs-optical switching in a single-layer antiferromagnetic memory. 2019. arXiv:1909.0907.

  75. Yu S, Skourski Y, Bommanaboyena SP, Klaui M, Jourdan M. Domain wall and anisotropic magnetoresistance of the antiferromagnetic Mn2Au. 2019. arXiv:1909.12606.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51822101, 51861135104, 51771009 and 11704018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, PX., Yan, H., Wang, XN. et al. Noncollinear spintronics and electric-field control: a review. Rare Met. 39, 95–112 (2020). https://doi.org/10.1007/s12598-019-01352-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01352-w

Keywords

Navigation