Skip to main content
Log in

An explicit and novel structure, lattice dynamics, and photoemission of La-doped nanocrystalline SrZrO3 perovskite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As no complete and comprehensive studies have been previously reported for La-doped nanocrystalline SrZrO3 (SZO), we researched herein a detailed investigation for pure and La-doped samples. A modified solid-state reaction process, including successive cycles of milling and sintering at high temperature, was followed to produce SZO and Sr0.9La0.1ZrO3 (SLZO) powdered ingots. Rietveld analysis of X-ray diffractometer data predicts that the two samples exhibit orthorhombic structure with an increase in crystallite size by ~25% for doped sample. A great reduction in Raman modes intensity (~60%) and an annihilation of several vibration modes were detected using Raman spectroscopy. The degree of ordering on the B-site was recorded to be higher in La-doped sample. According to ultraviolet–visible (UV–Vis) absorption, a decrease in the optical gap width (E g) from 4.40 eV to 4.21 eV was achieved by La incorporation due to the presence of additional defect states such as oxygen and Sr vacancies at the band edge. The process of electron–hole recombination was studied using photoluminescence (PL) spectroscopy. Deconvolution of PL spectra yielded four emission bands: one green band, one blue band, and two violet bands. Highly intense violet emission at λ = 393 nm approximately five times greater than that detected for pure SZO is realized as La3+ substitutes for Sr2+. Such property nominates SLZO for technological applications requiring highly intense violet emission, e.g., light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahtee A, Ahtee M, Glazer AM, Hewat AW. The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr B. 1976;32:3243.

    Google Scholar 

  2. Ali Z, Atta A, Abbas Y, Sedeek K, Adam A, Abdeltawab E. Multiferroic BiFeO3 thin films: structural and magnetic characterization. Thin Solid Films. 2015;577:124.

    CAS  Google Scholar 

  3. Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev. 2010;39(11):4355.

    CAS  Google Scholar 

  4. Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370.

    CAS  Google Scholar 

  5. Duan Y, Ohodnicki P, Chorpening B, Hackett G. Electronic structural, optical and phonon lattice dynamical properties of pure- and La-doped SrTiO3: an ab initio thermodynamics study. Solid State Chem. 2017;256:239.

    CAS  Google Scholar 

  6. Duan Y, Ohodnicki P, Chorpening B, Abernathy HW, Hakett G. Theoretical investigation of the electronic, structural, optical and thermodynamic properties of LaxSr1–xTiO3 (x = 0, 0.125, 0.25). ECS Trans. 2017;78(1):2865.

    CAS  Google Scholar 

  7. Schultz AM, Brown TD, Buric MP, Lee SW, Gerdes K, Ohodnicki PR. High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications. Sens Acuators B Chem. 2015;221:1307.

    CAS  Google Scholar 

  8. Schultz AM, Brown TD, Ohodnicki PR. Optical and cheme-resistive sensing in extreme environments: La-doped SrTiO3 films for hydrogen sensing at high temperatures. J Phys Chem C. 2015;119(11):6211.

    CAS  Google Scholar 

  9. Wei W, Dai Y, Guo M, Yu L, Huang B. Density functional characterization of the electronic structure and optical properties of N-doped, La-doped, and N/La-codoped SrTiO3. J Phys Chem C. 2009;113(33):15046.

    CAS  Google Scholar 

  10. Zhou X, Yan N, Chuang KT, Lou J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014;4(1):118.

    CAS  Google Scholar 

  11. Choi M, Posadas AB, Rodriguez CA, O’Hara A, Seinige H, Kellock AJ, Frank MM, Tsoi M, Zollner S, Narayanan V, Demkov AA. Structural, optical and electrical properties of strained La-doped SrTiO3 films. J Appl Phys. 2014;116:043705.

    Google Scholar 

  12. Suriyayothin N, Error NG. Effect of La additions on the electrical conductivity of SrZrO3. In: The 86th annual meeting of the American Ceramic Society, Pittsburgh (Pennsylvania). 1984. 1.

  13. Suriyayothin N, Padmanabhan R. Transmission electron microscopy investigations of second phases in the system (La, Sr)ZrO3. Mater Sci Eng. 1987;95:295.

    CAS  Google Scholar 

  14. Sedeek K, Said ShA, Hantour H, Makram N, Amer TZ. Innovative synthesis and properties of Fe doped nanocrystalline strontium zirconate for the development of visible light driven photocatalyst. Results Phys. 2019;12:1038.

    Google Scholar 

  15. Sedeek K, Said SA, Amer TZ, Makram N, Hantour H. Band gap tuning in nanocrystalline SrTi0.9Fe0.1O2.968 perovskite type for photocatalytic and photovoltaic applications. Ceram Int. 2019;45(1):1202.

    CAS  Google Scholar 

  16. Ahmad T, Ganguli AK. Synthesis, characterization and dielectric properties of nanocrystalline strontium zirconate prepared through a modified reverse miceller route. Mater Lett. 2006;60(29–30):3660.

    CAS  Google Scholar 

  17. Verma AS, Kumar A, Bhardwaj SR. Correlation between ionic charge and the lattice constant of cubic perovskite solids. Phys Status Solidi (B). 2008;245(8):1520.

    CAS  Google Scholar 

  18. Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Cryst. 1969;B25:925.

    Google Scholar 

  19. Howard CJ, Knight KS, Kennedy BJ, Kisi EH. The structural phase transitions in strontium zirconate. J Phys Condens Matter. 2000;12(45):L677.

    CAS  Google Scholar 

  20. Suriyayothin N, Eror NG. Solubility limit of La in SrZrO3. J Mater Sci. 1984;19(9):2775.

    CAS  Google Scholar 

  21. Cavalcante LS, Simões AZ, Sczancoski JC, Longo VM, Erlo R, Escote MT, Longo E, Varela JA. SrZrO3 powders obtained by chemical method: synthesis, characterization and optical absorption behaviour. Solid State Sci. 2007;9(11):1020.

    CAS  Google Scholar 

  22. Amisi S, Bousquet E, Katcho K, Ghosez P. First-principles study of structural and vibrational properties of SrZrO3. Phys Rev B. 2012;85:064112.

    Google Scholar 

  23. Kamishima O, Hattori T, Ohta K, Chiba Y, Ishigame M. Raman scattering of single-crystal SrZrO3. J Phys Condens Matter. 1999;11(27):5355.

    CAS  Google Scholar 

  24. Kumar A, Kumari S, Borkar H, Katiyar RS, Scott JF. Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO3. NPJ Comput Mater. 2017;3(2):1.

    Google Scholar 

  25. Tarrida M, Larguem H, Madon M. Structural investigations of (Ca, Sr)ZrO3 and Ca(Sn, Zr)O3 perovskite compounds. Phys Chem Miner. 2009;36(7):403.

    CAS  Google Scholar 

  26. Dopal PS, Dixit A, Katiyar RS. Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J Raman Spectrosc. 2007;38(2):142.

    Google Scholar 

  27. Zheng H, de Gyorgyfalva GDCC, Quimby R, Bagshaw H, Ubic R, Reaney IM, Yarwood J. Raman spectroscopy of B-site order–disorder CaTiO3-based microwave ceramics. J Eur Ceram Soc. 2003;23(14):2653.

    CAS  Google Scholar 

  28. Rashad MM, Mostafa AG, Rayan DA. Structural and optical properties of nanocrystalline mayenite Ca12Al14O33 powders synthesized using a novel route. J Mater Sci Mater Electron. 2016;27(3):2614.

    CAS  Google Scholar 

  29. Kubelka P, Munk F. The Kubelka–Munk theory of reflectance. Ein Beitrag zur Optik der Farbanstriche Z Technol Phys. 1931;12:593.

    Google Scholar 

  30. Barrón V, Torrent J. Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J Soil Sci. 1986;37(4):499.

    Google Scholar 

  31. Yun JN, Zhang ZY, Yan JF, Zhoa W. First principle study of structural stability and electronic structure of La-doped Sr1.9375La0.0625TiO3.965. J Appl Phys. 2010;107:103711.

    Google Scholar 

  32. Palik ED. Handbook of optical constants of solid II. Boston: Academic Press; 1991. 187.

    Google Scholar 

  33. Lee D, Lee Y. Correlation between optical and structural properties in SrZrO3 nanocrystals. New Phys Sae Mulli. 2012;62:1137.

    CAS  Google Scholar 

  34. Flores AMH, Martínez LMT, Moctezuma E, Sánchez OC. Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel. 2016;181:670.

    Google Scholar 

  35. Vanheusden K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE. Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys. 1996;79(10):7983.

    CAS  Google Scholar 

  36. Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Làzaro S, Freitas AZ, Gomes L Jr, Vieira ND, Varela JA, Longo E. Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater. 2008;56(10):2191.

    CAS  Google Scholar 

  37. Zhang A, Lü M, Wang Sh, Zhou G, Zhou Y. Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J Alloys Compd. 2007;433(1–2):L7.

    CAS  Google Scholar 

  38. Lee DJ, Kim DH, Park JW, Lee YS. Room-temperature violet-blue emission for SrZrO3 nanocrystals synthesized by using the combustion method. J Korean Phys Soc. 2011;59:2797.

    CAS  Google Scholar 

  39. Pathak N, Gupta SK, Ghosh PS, Arya A, Natarajan V, Kadam RM. Probing local site environments and distribution of manganese in SrZrO3:Mn; PL and EPR spectroscopy complimented by DFT calculations. RSC Adv. 2015;5(23):17501.

    CAS  Google Scholar 

  40. Gupta SK, Ghosh PS, Pathak N, Arya A, Natarajan V. Understanding the local environment of Sm3+ in doped SrZrO3 and energy transfer mechanism using time-resolved luminescence: a combined theoretical and experimental approach. RSC Adv. 2014;4(55):29202.

    CAS  Google Scholar 

  41. Huang J, Zhou L, Wang Z, Lan Y, Tong Z, Gong F, Sun J, Li L. Photoluminescence properties of SrZrO3: Eu3+ and BaZrO3: Eu3+ phosphors with perovskite structure. J Alloys Compd. 2009;487(1–2):L5.

    CAS  Google Scholar 

  42. Longo VM, Cavalcante LS, Costa MGS, Moreira ML, Figueiredo AT, Andrés J, Varela JA, Longo E. First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor Chem Acc. 2009;124:385.

    CAS  Google Scholar 

  43. Davies RA, Islam MS, Gale JD. Dopant and proton incorporation in perovskite-type zirconates. Solid State Ion. 1999;126(3–4):323.

    CAS  Google Scholar 

  44. Minervini L, Grimes RW. Disorder in pyrochlore oxides. J Am Ceram Soc. 2000;83(8):1873.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Grants Commission of Al-Azhar University, Cairo, Egypt for supporting this work. The authors are Thankful to Nanotechnology Characterization Center (NCC)-Cairo University and Central Metallurgical Research Institute (CMRDI)-El Tebeen for extending the XRD and UV–Vis diffused reflectance facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa Ali Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedeek, K., Makram, N., Hantour, H. et al. An explicit and novel structure, lattice dynamics, and photoemission of La-doped nanocrystalline SrZrO3 perovskite. Rare Met. 40, 105–112 (2021). https://doi.org/10.1007/s12598-019-01326-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01326-y

Keywords

Navigation