Skip to main content
Log in

Microstructural evolution and mechanical properties of Ni–45Ti–5Al–2Nb–1Mo alloy subjected to different heat treatments

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of solution and aging heat treatment on microstructural evolution and room temperature tensile properties for as-forged Ni–45Ti–5Al–2Nb–1Mo alloy were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile tests. The results show that the microstructure of solution-treated alloy comprises NiTi matrix, Ti2Ni and (Nb,Ti)SS phases. After aging treatment at 700 °C for 6 and 100 h, the distribution of Ti2Ni and (Nb,Ti)SS precipitates increases in uniformity. No new type of precipitate is observed in the specimen aged at 700 °C. After aging at 800 °C for 100 h, numerous nanosized Ni2TiAl phases are precipitated within the grains. Solution and aging treatments improve the tensile properties at room temperature. Tensile strength and ductility are improved after solution treatment at 1100 °C plus aging treatment at 800 °C for 6 h or 700 °C for 100 h. With aging time prolonging to 100 h at 800 °C, the precipitation of fine Ni2TiAl particles leads to the improvement in tensile strength and deterioration of elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Otsuka K, Ren XB. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.

    Article  CAS  Google Scholar 

  2. Fan QC, Zhang YH, Wang YY, Sun MY, Meng YT, Huang SK, Wen YH. Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater Sci Eng A. 2017;700:269.

    Article  CAS  Google Scholar 

  3. Wang Z, Xu XW, Zhang B. Hot compression deformation behavior of biomedical NiTi alloy. Rare Met. 2019;38(7):609.

    Article  Google Scholar 

  4. Koizumi Y, Ro Y, Nakazawa S, Harada H. NiTi-base intermetallic alloys strengthened by Al substitution. Mater Sci Eng A. 1997;223(1–2):36.

    Article  Google Scholar 

  5. Enomoto M, Kumeta T. Analysis of the β’Ni2TiAl/βNiTi equilibrium in Ni–Ti–Al alloys by the cluster variation method. Intermetallics. 1997;5(2):103.

    Article  CAS  Google Scholar 

  6. Meng LJ, Li Y, Zhao XQ, Xu J, Xu HB. The mechanical properties of intermetallic Ni50−xTi50Alx alloys. Intermetallics. 2007;15(5–6):814.

    Article  CAS  Google Scholar 

  7. Xu HB, Meng LJ, Xu J, Li Y, Zhao XQ. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics. 2007;15(5–6):778.

    Article  CAS  Google Scholar 

  8. Song XY, Li Y, Zhang F. Microstructure and Tensile properties of isothermally forged Ni–43Ti–4Al–2Nb–2Hf alloy. Rare Met. 2013;32(5):475.

    Article  CAS  Google Scholar 

  9. Song XY, Li Y, Zhang F, Li SS. NiTiAl alloys strengthened by Mo replacement. Chin J Aeronaut. 2010;23(6):715.

    Article  CAS  Google Scholar 

  10. Li Y, Yu KY, Song XY, Zhang F. Effect of Zr addition on microstructures and mechanical properties of Ni–46Ti–4Al alloy. Rare Met. 2011;30(5):522.

    Article  CAS  Google Scholar 

  11. Xu J, Zhao XQ, Gong SK. The influence of Nb diffusion on the oxidation behavior of TiNiAlNb alloys with different Ti/Ni ratio. Mater Sci Eng A. 2007;458(1–2):381.

    Article  Google Scholar 

  12. Zhao XQ, Xu J, Tang L, Gong SK. High temperature oxidation behavior of NiTiNb intermetallic alloys. Intermetallics. 2007;15(8):1105.

    Article  CAS  Google Scholar 

  13. Zhou L, Zheng LJ, Guo YH, Zhang HR, Zhang H. Microstructure evolution of directionally solidified Ni–43Ti–7Al alloy during heat treatment. J Mater Sci. 2013;48(5):2176.

    Article  CAS  Google Scholar 

  14. Pan LW, Zheng LJ, Han WJ, Zhou L, Hu ZL, Zhang H. High-temperature tensile properties of a NiTi–Al-based alloy prepared by directional solidification and homogenizing treatment. Mater Des. 2012;39(3):192.

    Article  CAS  Google Scholar 

  15. Liu KT, Duh JG. Hardness evolution of NiTi and NiTiAl thin films under various annealing temperatures. Surf Coat Technol. 2008;202(12):2737.

    Article  CAS  Google Scholar 

  16. Fatemeh K, Jafar KA, Vahid AC, Soheil N. Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. J Alloys Compd. 2013;554:32.

    Article  Google Scholar 

  17. Karunaratne MSA, Carter P, Reed RC. On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 °C. Acta Mater. 2001;49(5):861.

    Article  CAS  Google Scholar 

  18. Jung J, Ghosh G, Olson GB. A comparative study of precipitation behavior of Heusler phase (Ni2TiAl) from B2-TiNi in Ni–Ti–Al and Ni–Ti–Al–X (X = Hf, Pd, Pt, Zr) alloys. Acta Mater. 2003;51(20):6341.

    Article  CAS  Google Scholar 

  19. Warren P, Murakami Y, Koizumi Y, Harada H. Phase separation in NiTi–Ni2TiAl alloy system. Mater Sci Eng A. 1997;223(1–2):17.

    Article  Google Scholar 

  20. Song XY, Li Y, Zhang F. Microstructure and mechanical properties Nb- and Mo-modified NiTi–Al-based intermetallics processed by isothermal forging. Mater Sci Eng A. 2014;594:229.

    Article  CAS  Google Scholar 

  21. Song XY, Ye WJ, Hui SX, Li Y. Oxidation behavior of NiTi–Al based alloy with Nb and Mo additions. In: IOP Conference Series: Materials Science and Engineering, vol 250; 2017. 25.

  22. Sun MY, Meng YT, Zhang YH, Wang YY, Fan QC, Huang SK. Texture and its effect on shape memory properties of Ni47Ti44Nb9 forged rods. Chin J Rare Met. 2018;42(8):785.

    Google Scholar 

  23. Wang C, Gao QZ, Yuan Y, Zhang HL, Zhang J, Wang QY, Qu F. Microstructure evolutions of Ni–Ti–Nb–Al alloys with different Al addition. J Alloys Compd. 2017;695:2923.

    Article  CAS  Google Scholar 

  24. Chen Y, Jiang HC, Liu SW, Rong LJ, Zhao XQ. The effect of Mo additions to high damping Ti–Ni–Nb shape memory alloys. Mater Sci Eng A. 2009;512(1–2):26.

    Article  Google Scholar 

  25. Jung J, Ghosh G, Isheim D, Olson GB. Precipitation of Heusler phase (Ni2TiAl) from B2-TiNi in Ni–Ti–Al and Ni–Ti–Al–X (X = Hf, Zr) alloys. Metall Mater Trans A. 2003;34(6):1221.

    Article  Google Scholar 

  26. Zhou L, Zheng LJ, Zhang HR, Zhang H. Microstructural characteristics of directionally solidified Ni–43Ti–7Al alloys. Mater Sci Technol. 2012;28(8):994.

    Article  CAS  Google Scholar 

  27. Zhou L, Zheng LJ, Zhang HR, Zhang H. Effect of oxygen on microstructure of Ni–43Ti–7Al alloy. Mater Res Innov. 2012;16(2):115.

    Article  CAS  Google Scholar 

  28. Kumeta T, Enomoto M. Influence of alloying elements on the lattice misfit between β′Ni2AlTi and βNiTi phases. Scr Mater. 2001;44(3):481.

    Article  CAS  Google Scholar 

  29. Zheng LJ, Guo YH, Zhou L, Zhang XL, Zhang H. Microstructural characterization in 7 at% Al-containing NiTi-based alloys. Rare Met. 2014;33(5):534.

    Article  CAS  Google Scholar 

  30. Zheng LJ, Guo L, Wang FF, Ma MZ, Zhang H. Microstructural refinement and enhanced mechanical properties of suction-cast NiTi–Al alloy for structural use. Rare Met. 2015. https://doi.org/10.1007/s12598-015-0580-8.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51571036 and 51201016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, XY., Li, Y. & Zhang, F. Microstructural evolution and mechanical properties of Ni–45Ti–5Al–2Nb–1Mo alloy subjected to different heat treatments. Rare Met. 42, 2774–2780 (2023). https://doi.org/10.1007/s12598-019-01318-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01318-y

Keywords

Navigation