Skip to main content
Log in

High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The ingots with nominal composition \({ \Pr }_{9.5} {\text{Fe}}_{84 - x} {\text{B}}_{6.4} {\text{P}}_{0.1} {\text{Zr}}_{x}\) (x = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s−1. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m−1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan XH, Chan SF, Han K, Xu H. Combined effects of magnetic interaction and domain wall pinning on the coercivity in a bulk Nd60Fe30Al10 ferrimagnets. Sci Rep. 2014;4:6805.

    Article  CAS  Google Scholar 

  2. Liu WQ, Chang C, Yue M, Yang JS, Zhang DT, Zhang JX, Liu YQ. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Met. 2017;36(9):718.

    Article  CAS  Google Scholar 

  3. Wang L, Chen JW, Yue M, Liu RM, Liu WQ, Zhang DT, Zhang JX, Zhang PY, Ge HL. Crystallographic alignment and magnetic anisotropy in melt-spun Nd-Fe-B/α-Fe composite ribbons with different neodymium contents. J Rare Earth. 2011;29(5):471.

    Article  CAS  Google Scholar 

  4. Ding HW, Cui CX, Yang W, Sun JB. Effects of cobalt addition on microstructure and magnetic properties of PrNdFeB/Fe7Co3 nanocomposite. J Rare Earth. 2017;35(5):468.

    Article  CAS  Google Scholar 

  5. Tanaka K, Fukuzaki T, Miyasaka T, Nishimoto K, Muro Y, Nishio K, Tamura R. Magnetic properties of Nd-Fe-B-Zr bulk nanocomposite magnets prepared by spark plasma sintering method. J Phys Conf Ser. 2008;106:012014.

    Article  Google Scholar 

  6. Zaluska A, Xu Y, Altounian Z, Strom-Olsen J. Effects of quench rate on the texture in melt-spun Nd–Fe–B alloys. Mater Sci Eng A. 1991;133:819.

    Article  Google Scholar 

  7. Li ZB, Zhang M, Wang LC, Shen BG, Zhang XF, Li YF, Hu FX, Sun JR. Investigation on intergranular exchange coupling effect in Pr9Fe85.5B5.5 ribbons. Appl Phys Lett. 2014;104(5):052406.

    Article  Google Scholar 

  8. Liu ZW, Qian DY, Zhao LZ, Zheng ZG, Gao XX, Ramanujan RV. Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)–Fe–B alloys with reduced Dy content by Zr addition. J Alloys Compd. 2014;606:44.

    Article  CAS  Google Scholar 

  9. Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49:6100.

    Article  CAS  Google Scholar 

  10. Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM-Fe-B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.

    Article  CAS  Google Scholar 

  11. Jin Z, Okumura H, Zhang Y, Wang H, Muñoz J, Hadjipanayis G. Microstructure refinement and significant improvements of magnetic properties in Pr2Fe14B/α-Fe nanocomposites. J Magn Magn Mater. 2002;248(2):216.

    Article  CAS  Google Scholar 

  12. Pang LJ, Sun GF, Chen JF, Qiang WJ, Li WA, Zhang JB. Preferred orientation in nanocomposite permanent magnet materials. J Rare Earth. 2006;24(1):76.

    Article  Google Scholar 

  13. Ma SC, Ge Q, Yang S, Liu K, Han XQ, Yu K, Song Y, Zhang ZS, Jiang QZ, Chen CC, Liu RH, Zhong ZC. Microstructure, magnetic and magnetocaloric properties in Ni42.9Co6.9Mn38.3Sn11.9 alloy ribbons. AIP Adv. 2018;8(5):056410.

    Article  Google Scholar 

  14. Wang L, Quan Q, Zhang L, Hu X, Rehman SU, Jiang Q, Du J, Zhong ZC. Microstructures, magnetic properties and coercivity mechanisms of Nd-Ce-Fe-B based alloys by Zr substitution. J Appl Phys. 2018;123(11):113904.

    Article  Google Scholar 

  15. Tao S, Ahmad Z, Ma T, Yan M. Rapidly solidified Nd7Fe67B22Mo3Zr1 nanocomposite permanent magnets. J Magn Magn Mater. 2014;355:164.

    Article  CAS  Google Scholar 

  16. Chang HW, Chiu CH, Chang CW, Chen CH, Chang WC, Yao YD, Sun AC. Effect of substitution of refractory elements for Fe on the magnetic properties of melt-spun Pr9.5Fe80.5B10 nanocomposites. J Alloys Compd. 2006;407(1–2):53.

    Article  CAS  Google Scholar 

  17. Wang TP, Wang ZY, Yang WY, Zhou D, Wu JH, Zhou B, Jin ML, Dong GL, Sui YL. Differences in the structure and magnetic properties of (Nd0.75Pr0.25)9.5Fe76X4B10.5 (X = Nb, Zr) ribbons by conventional and microwave-assisted annealing treatment. J Rare Earth. 2017;35(7):667.

    Article  CAS  Google Scholar 

  18. Betancourt I, Davies H. Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe, Co)14B/α (Fe, Co)(RE = Nd–Pr) alloys. J Magn Magn Mater. 2003;261:328.

    Article  CAS  Google Scholar 

  19. Kawai R, Kamoi T, Fukuzaki T, Tamura R, Nishio K, Hayashi A, Aikawa N. Effect of Nb and Zr additions to magnetic properties of Nd-Fe-B bulk nanocomposites. J Phys Conf Ser. 2010;232(1):012008.

    Article  Google Scholar 

  20. Wang C, Yan M, Zhang W. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd, Pr)2Fe14B/α-Fe alloys. J Magn Magn Mater. 2006;306:195.

    Article  CAS  Google Scholar 

  21. Wang C, Yan M, Li Q. Crystallization kinetics, microstructure and magnetic properties of Nd2Fe14B/α-Fe magnets with Zr addition. J Phys D Appl Phys. 2007;40(12):3551.

    Article  CAS  Google Scholar 

  22. Pan M, Zhang P, Ge H, Hong Z, Wu Q, Jiao Z, Yang H. Effect of Zr addition on the magnetization reversal behavior for α-Fe/Pr2Fe14B nanocomposite alloys. Jpn J Appl Phys. 2011;50(9R):093001.

    Article  Google Scholar 

  23. Bao XQ, Gao XX, Zhu J, Zhou SZ. Effect of zirconium content on exchange coupling and magnetization reversal of nanocrystalline Nd12.3Fe81.7–xZrx B6 alloy. J Rare Earth. 2011;29(10):939.

    Article  CAS  Google Scholar 

  24. Sheng HC, Zeng XR, Li XH, Zou JZ, Xie SH. Improvement of the magnetic properties of Nd9.5Fe81Zr3B6.5 nanocomposite magnets by semi-melt spinning. J Magn Magn Mater. 2009;321:3042.

    Article  CAS  Google Scholar 

  25. Zhang W, Kazahari A, Yubuta K, Makino A, Wang Y, Umetsu R, Li Y. Effect of P addition on the structure and magnetic properties of melt-spun Fe–Pt–B alloy. J Alloys Compd. 2014;586(s1):S294.

    Article  CAS  Google Scholar 

  26. Zeng XR, Sheng HC, Jin CX, Qian HX. Magnetic properties and microstructure of melt-spun Nd2Fe14B/α-Fe nanocomposite magnets with a perpendicular anisotropy. J Magn Magn Mater. 2016;401:1155.

    Article  CAS  Google Scholar 

  27. Senkov ON, Miracle DB. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull. 2001;36(12):2183.

    Article  CAS  Google Scholar 

  28. Zhao L, Hong Y, Fang X, Qiu Z, Zhong X, Gao X, Liu Z. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting. J Magn Magn Mater. 2016;408:152.

    Article  CAS  Google Scholar 

  29. Liu Z, Davies H. Intergranular exchange interaction in nanocrystalline hard magnetic rare earth–iron–boron-based melt-spun alloy ribbons. J Phys D Appl Phys. 2009;42(14):145006.

    Article  Google Scholar 

  30. Tang W, Wu Y, Dennis K, Kramer M, Anderson I, McCallum R. Effect of Zr substitution on microstructure and magnetic properties of YDy-based R2Fe14B magnets (R = Y + Dy + Nd). J Appl Phys. 2005;97(10):10H106.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11474184 and 11627805) and Shandong Province Natural Science Foundation of China (No. ZR2016EMM14). We thank Song and Zhang from ZKKF (Beijing), and Cui from National Demonstration Physics Education (Shandong University) for the help of TEM and XRD support, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bing Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Han, GB. & Kang, SS. High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition. Rare Met. 39, 41–47 (2020). https://doi.org/10.1007/s12598-019-01258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01258-7

Keywords

Navigation