Skip to main content
Log in

Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CoSb3-based skutterudites have been a benchmark mid-temperature thermoelectric material under intensive experimental and theoretical studies for decades. Doping and filling, to the first order, alter the crystal lattice constant of CoSb3 in the context of “chemical pressure.” In this work, we employed ab initio density functional theory in conjunction with semiclassical Boltzmann transport theory to investigate the mechanical properties and especially how hydrostatic loadings, i.e., “physical pressure,” impact the electronic band structure, Seebeck coefficient, and power factor of pristine CoSb3. It is found that hydrostatic pressure enlarges the band gap, suppresses the density of states (DOS) near the valence band edge, and fosters the band convergence between the valley bands and the conduction band minimum (CBM). By contrast, hydrostatic tensile reduces the band gap, increases the DOS near the valence band edge, and diminishes the valley bands near the CBM. Therefore, applying hydrostatic pressure provides an alternative avenue for achieving band convergence to improve thermoelectric properties of N-type CoSb3, which is further supported by our carrier concentration studies. These results provide valuable insight into the further improvement of thermoelectric performance of CoSb3-based skutterudites via a synergy of physical and chemical pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  2. Nolas GS, Morelli DT, Tritt TM. Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Ann Rev Mat Sci. 1999;29(1):89.

    Article  Google Scholar 

  3. Slack GA. CRC Handbook of Thermoelectric: New Materials and Performance Limits for Thermoelectric Cooling. Florida: CRC Press; 1995. 407.

    Google Scholar 

  4. Uher C. Skutterudites: prospective novel thermoelectrics. Semicond Semimet. 2001;69:139.

    Article  Google Scholar 

  5. Hu CZ, Zeng XY, Liu YF, Zhou MH, Zhao HJ, Tritt TM, He J, Jakowski J, Kent PRC, Huang JS, Sumpter BG. Effects of partial La filling and Sb vacancy defects on CoSb3 skutterudites. Phys Rev B. 2017;95(16):165204.

    Article  Google Scholar 

  6. Mei ZG, Yang J, Pei YZ, Zhan W, Chen LD. Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials: theoretical study. Phys Rev B. 2008;77(4):045202.

    Article  Google Scholar 

  7. Graff WJ, Zeng XY, Dehkordi AM, He J, Tritt TM. Exceeding the filling fraction limit in CoSb3 skutterudite: multi-role chemistry of praseodymium leading to promising thermoelectric performance. J Mater Chem A. 2014;2(23):8933.

    Article  Google Scholar 

  8. Katsuyama S, Shichijo Y, Ito M, Majima K, Nagai H. Thermoelectric properties of the skutterudite Co1-xFe x Sb3 system. J Appl Phys. 1998;84(12):6708.

    Article  Google Scholar 

  9. Sharp JW, Jones EC, Williams RK, Martin PM, Sales BC. Thermoelectric properties of CoSb3 and related alloys. J Appl Phys. 1995;78(2):1013.

    Article  Google Scholar 

  10. Sales BC, Mandrus D, Williams RK. Filler skutterudite antimonides: a new class of thermoelectric materials. Science. 1996;272(5266):1325.

    Article  Google Scholar 

  11. Morelli DT, Meisner GP, Chen BX, Hu SQ, Uher C. Cerium filling and doping of cobalt triantimonide. Phys Rev B. 1997;56(12):7376.

    Article  Google Scholar 

  12. Lamberton GA Jr, Tedstrom RH, Tritt TM, Nolas GS. Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J Appl Phys. 2005;97(11):113715.

    Article  Google Scholar 

  13. Singh DJ, Du MH. Properties of alkaline-earth-filled skutterudite antimonides: A(Fe, Ni)4Sb12 (A = Ca, Sr, and Ba). Phys Rev B. 2010;82(7):075115.

    Article  Google Scholar 

  14. Ovsyannikov SV, Shchennikov VV. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem Mater. 2010;22(3):635.

    Article  Google Scholar 

  15. Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41(3):763.

    Article  Google Scholar 

  16. Li GD, An Q, Li WJ, Goddard WA III, Zhai P, Zhang QJ, Snyder GJ. Brittle failure mechanism in thermoelectric skutterudite CoSb3. Chem Mater. 2015;27(18):6329.

    Article  Google Scholar 

  17. Rogl G, Rogl P. Mechanical properties of skutterudites. Sci Adv Mater. 2011;3(4):517.

    Article  Google Scholar 

  18. Ruan ZW, Liu LS, Zhai PC, Wen PF, Zhang QJ. Low-cycle fatigue properties of CoSb3-based skutterudite compounds. J Electron Mater. 2010;39(9):2029.

    Article  Google Scholar 

  19. Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-curzio E. The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials. Philos Mag. 2012;92(10):1261.

    Article  Google Scholar 

  20. Yang XQ, Zhai PC, Liu LS, Zhang QJ. Thermodynamic and mechanical properties of crystalline CoSb3: a molecular dynamics simulation study. J Appl Phys. 2011;109(12):123517.

    Article  Google Scholar 

  21. Takizawa H, Miura K, Ito M, Suzuki T, Endo T. Atom insertion into the CoSb3 skutterudite host lattice under high pressure. J Alloys Compd. 1999;282(1):79.

    Article  Google Scholar 

  22. Kraemer AC, Perottoni CA, Da Jornada JAH. Isothermal equation of state for the skutterudites CoSb3 and LaFe3CoSb12. Solid State Commun. 2005;133(3):173.

    Article  Google Scholar 

  23. Jacobsen MK, Liu W, Li B. Enhancement of thermoelectric performance with pressure in Ce0.8Fe3CoSb12.1. J Phys Chem Solids. 2014;75(9):1017.

    Article  Google Scholar 

  24. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558.

    Article  Google Scholar 

  25. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  Google Scholar 

  26. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

    Article  Google Scholar 

  27. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

    Article  Google Scholar 

  28. Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matt. 2010;22(2):0953.

    Google Scholar 

  29. Tian YH, Huang JS, Sheng XL, Sumpter BG, Yoon M, Kertesz M. Nitrogen doping enables covalent-like π–π bonding between graphenes. Nano Lett. 2015;15(8):5482.

    Article  Google Scholar 

  30. Lebegue S, Harl J, Gould T, Angyan JG, Kresse G, Dobson JF. Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys Rev Lett. 2010;105(19):196401.

    Article  Google Scholar 

  31. Zhou J, Huang JS, Sumpter BG, Kent PRC, Terrones H, Smith SC. Structures, energetics, and electronic properties of layered materials and nanotubes of cadmium chalcogenides. J Phys Chem C. 2013;117(48):25817.

    Article  Google Scholar 

  32. Bučko T, Lebegue S, Hafner J, Ángyán JG. Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phy Rev B. 2013;87(6):064110.

    Article  Google Scholar 

  33. Page YL, Saxe P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phy Rev B. 2002;65(10):104104.

    Article  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  Google Scholar 

  35. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118(18):8207.

    Article  Google Scholar 

  36. Mostofi AA, Yates JR, Lee YS, Souza I, Vanderbilt D, Marzari N. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2008;178(9):685.

    Article  Google Scholar 

  37. Singh DJ, Pickett WE. Skutterudite antimonides: quasilinear bands and unusual transport. Phys Rev B. 1994;50(15):11235.

    Article  Google Scholar 

  38. Ram S, Kanchana V, Valsakumar MC. Skutterudites under pressure: an ab initio study. J Appl Phys. 2014;115(9):093903.

    Article  Google Scholar 

  39. Pizzi G, Volja D, Kozinsky B, Fornari M, Marzari N. BoltzWann: a code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput Phys Commun. 2014;185(1):422.

    Article  Google Scholar 

  40. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65(5):349.

    Article  Google Scholar 

  41. Hu CZ, Huang JS, Sumpter BG, Meletis E, Dumitrica T. Ab initio prediction of hexagonal Zr(B,C,N) polymorphs for coherent interface design. J Phys Chem C. 2017;121(46):26007.

    Article  Google Scholar 

  42. Reuss A. Calculation of the flow limits of mixed crystals on the basis of plasticity of the monocrystals. Angew Math Mech. 1929;9(1):49.

    Article  Google Scholar 

  43. Rotter M, Rogl P, Grytsiv A, Wolf W, Krisch M, Mirone A. Lattice dynamics of skutterudites: inelastic X-ray scattering on CoSb3. Phys Rev B. 2008;77(14):144301.

    Article  Google Scholar 

  44. Guo RQ, Wang XJ, Huang BL. Thermal conductivity of skutterudite CoSb3 from first principles: substitution and nanoengineering effects. Sci Rep. 2015;5:7806.

    Article  Google Scholar 

  45. Rasander M, Moram MA. On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. J Chem Phys. 2015;143(14):144104.

    Article  Google Scholar 

  46. Keppens V, Mandrus D, Sales BC, Chakoumakos BC, Dai P, Coldea R, Maple MB, Gajewski DA, Freeman EJ, Bennington S. Localized vibrational modes in metallic solids. Nature. 1998;395(6705):876.

    Article  Google Scholar 

  47. Möchel A, Sergueev I, Nguyen N, Long GJ, Grandjean F, Johnson DC, Hermann RP. Lattice dynamics in the FeSb3 skutterudite. Phys Rev B. 2011;84(6):064302.

    Article  Google Scholar 

  48. Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S. Mechanical properties of thermoelectric skutterudites. AIP Conf Proc. 2008;969:656.

    Article  Google Scholar 

  49. Tang Y, Gibbs ZM, Agapito LA, Li GD, Kim HS, Nardelli MB, Curtarolo S, Snyder GJ. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater. 2015;14(12):1223.

    Article  Google Scholar 

  50. Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  Google Scholar 

  51. Matsubara K, Iyanaga T, Tsubouchi T, Kishimoto K, Koyanagi K. Thermoelectric properties of (Pd, Co)Sb3 compounds with skutterudite structure. AIP Conf Proc. 1994;316(1):226.

    Article  Google Scholar 

  52. Mandrus D, Migliori A, Darling TW, Hundley MF, Peterson EJ, Thompson JD. Electronic transport in lightly doped CoSb3. Phys Rev B. 1995;52(7):4926.

    Article  Google Scholar 

  53. Goldsmid HJ, Sharp JW. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electron Mater. 1999;28(7):869.

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted at the Center for Nanophase Materials Sciences, which is a US Department of Energy Office of Science User Facility, and used resources of the National Energy Research Scientific Computing Center, which are supported by the Office of Science of the US Department of Energy (Nos. DE-AC05-00OR22750 and DE-AC02-05-CH11231). Chongze Hu and Jian He would like to acknowledge the support of National Science Foundation (No. DMR-1307740).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian He or Jingsong Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Ni, P., Zhan, L. et al. Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Met. 37, 316–325 (2018). https://doi.org/10.1007/s12598-018-1000-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1000-7

Keywords

Navigation