Skip to main content
Log in

Formation mechanism and mechanical properties of surface nanocrystallized Ti–6Al–4V alloy processed by surface mechanical attrition treatment

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the present work, surface mechanical attrition treatment (SMAT) was proposed to achieve surface nanocrystallization on Ti–6Al–4V surface via high-energy planetary ball milling method using a planetary ball mill. The characteristics of microstructure were studied using different methods. Surface nanocrystallization is achieved on Ti–6Al–4V substrate. The process of refinement could be summarized into four steps. During the refinement process, the reticular continuous beta phase performs a significant role, it cracked, broke up and moved to each side along the grain boundaries. The movement of beta grains has the capabilities of effectively optimizing the grain orientation and accelerating the further refinement of alpha grains. Twinning also plays an important role during the refinement. The grain orientation between different types of grains seems to be larger than that of same type grains. The interface will be divided into smaller nanocrystalline grains once the dislocation density breaks the threshold. Then, the balance will be achieved again and owns a higher critical value which cannot be broken, then a stable grain size can be achieved ultimately. The results of microhardness, friction coefficient and wear mass loss tests of SMAT samples indicate that the mechanical behaviors of substrate are greatly enhanced after this novel SMAT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leyens C, Peters M. Titanium and Titanium Alloys. Cologne: Wiley-VCH; 2003. 19.

    Book  Google Scholar 

  2. Wen M, Gu JF, Liu G, Wang ZB, Lu J. Surface evolution of a gradient structured Ti in hydrogen peroxide solution. Appl Surf Sci. 2008;254(9):2905.

    Article  CAS  Google Scholar 

  3. Pirzada MDS, Froes FH, Patankar SN. Mechanochemical processing of nanocrystalline Ti–6Al–4V alloy. Metall Mater Trans A. 2004;35(6):1899.

    Article  Google Scholar 

  4. Zhu KY, Vassel A, Brisset F, Lu K, Lu J. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 2004;52(14):4101.

    Article  CAS  Google Scholar 

  5. Huang L, Lu J, Troyon M. Nanomechanical properties of nanostructured titanium prepared by SMAT. Surf Coat Technol. 2006;201(201):208.

    Article  CAS  Google Scholar 

  6. Masiha HR, Bagheri HR, Gheytani M, Aliofkhazraei M, Rouhaghdam AS, Shahrabi T. Effect of surface nanostructuring of aluminum alloy on post plasma electrolytic oxidation. Appl Surf Sci. 2014;317(30):962.

    Article  CAS  Google Scholar 

  7. Kumar SA, Raman SGS, Narayanan TSNS, Gnanamoorthy R. Influence of counterbody material on fretting wear behaviour of surface mechanical attrition treated Ti–6Al–4V. Tribol Int. 2013;57(4):107.

    Article  Google Scholar 

  8. Fridrici V, Fouvry S, Kapsa P. Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear. 2001;250(1–12):642.

    Article  Google Scholar 

  9. Yin F, Hu S, Hua L, Wang XM, Suslov S, Han QY. Surface nanocrystallization and numerical modeling of low carbon steel by means of ultrasonic shot peening. Metall Mater Trans A. 2014;46(3):1253.

    Article  Google Scholar 

  10. Fu Y, Loh NL, Batchelor AW, Liu D, Zhu X, He J, Xu K. Improvement in fretting wear and fatigue resistance of Ti–6Al–4V by application of several surface treatments and coatings. Surf Coat Technol. 1998;106(2–3):193.

    Article  CAS  Google Scholar 

  11. Ye C, Suslov S, Fei X, Cheng GJ. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta Mater. 2011;59(19):7219.

    Article  CAS  Google Scholar 

  12. Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377(1):38.

    Article  Google Scholar 

  13. Sahu JN, Sasikumar C. A novel method for development of hard nano crystalline surface through SMAT and mechanical alloying. Mater Today. 2016;3(6):1968.

    Google Scholar 

  14. Wen L, Yuan Y, Wang Y, Jin Y. Effect of nanocrystalline surface and iron-containing layer obtained by SMAT on tribological properties of 2024 Al alloy. Rare Metal Mater Eng. 2015;44(6):1320.

    Article  CAS  Google Scholar 

  15. Wang ZB, Lu K, Wilde G, Divinski SV. Interfacial diffusion in Cu with a gradient nanostructured surface layer. Acta Mater. 2010;58(7):2376.

    Article  CAS  Google Scholar 

  16. May J, Dinkel M, Amberger D, Höppel HW, Göken M. Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum–magnesium alloys. Metall Mater Trans A. 2007;38(9):1941.

    Article  Google Scholar 

  17. Chang HW, Kelly PM, Shi YN, Zhang MX. Effect of eutectic Si on surface nanocrystallization of Al–Si alloys by surface mechanical attrition treatment. Mater Sci Eng A. 2011;530(12):304.

    Article  CAS  Google Scholar 

  18. Arifvianto B, Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl Surf Sci. 2012;258(10):4538.

    Article  CAS  Google Scholar 

  19. Ortiz AL, Tian JW, Shaw LL, Liaw PK. Experimental study of the microstructure and stress state of shot peened and surface mechanical attrition treated nickel alloys. Scr Mater. 2010;62(3):129.

    Article  CAS  Google Scholar 

  20. Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C. Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf Coat Technol. 2013;224(28):82.

    Article  CAS  Google Scholar 

  21. Wen M, Wen C, Hodgson P, Li Y. Thermal oxidation behaviour of bulk titanium with nanocrystalline surface layer. Corros Sci. 2012;59(3):352.

    Article  CAS  Google Scholar 

  22. Wen M, Liu G, Gu JF, Guan WM, Lu J. Dislocation evolution in titanium during surface severe plastic deformation. Appl Surf Sci. 2009;255(12):6097.

    Article  CAS  Google Scholar 

  23. Keijser THD, Langford JI, Mittemeijer EJ, Vogels ABP. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Crystallogr. 1982;15(3):308.

    Article  Google Scholar 

  24. He D, Zaefferer S, Zhu J, Lai Z. Three-dimensional morphological and crystallographic investigation of lamellar alpha and retained beta in a near alpha titanium alloy by combination of focused ion beam and electron backscattering diffraction. Steel Res Int. 2012;83(5):496.

    Article  CAS  Google Scholar 

  25. Archard JF, Hirst W. The wear of metals under unlubricated conditions. Proc R Soc Lond Ser A. 1956;236(1206):397.

    Article  Google Scholar 

  26. Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci. 1981;26(2–4):123.

    Article  CAS  Google Scholar 

  27. Chichili DR, Ramesh KT, Hemker KJ. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater. 1998;46(3):1025.

    Article  CAS  Google Scholar 

  28. Jin L, Cui W, Song X, Zhou L. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment. Appl Surf Sci. 2015;347(30):553.

    Article  CAS  Google Scholar 

  29. He D, Zhu JC, Lai ZH, Liu Y, Yang XW. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy. Mater Des. 2013;46(4):38.

    Article  CAS  Google Scholar 

  30. He D, Zhu JC, Zaefferer S, Raabe D, Liu Y, Lai ZL, Yang XW. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β → α phase transformation in a near α titanium alloy. Mater Sci Eng A. 2012;549(15):20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51475232), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, Basic Research on Metal Surface Modification by Surface Mechanical Attrition Treatment) and the Foundation of Graduate Innovation Center in NUAA and the Fundamental Research Funds for the Central Universities (No. Kfjj20150605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fu Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Chen, C., Ranabhat, J. et al. Formation mechanism and mechanical properties of surface nanocrystallized Ti–6Al–4V alloy processed by surface mechanical attrition treatment. Rare Met. 42, 1343–1352 (2023). https://doi.org/10.1007/s12598-017-0988-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0988-4

Keywords

Navigation