Skip to main content
Log in

Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is one of the most active cathode materials and shows significant hydration effect suggesting possible proton conductivity. In this study, the performance of BSCF cathode on a proton-conducting BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte with silver and gold current collectors was determined. The electrochemical characteristics of the symmetrical and anode-supported cell with diluted silver electrode, silver current collector or gold current collector on BSCF electrode were compared. The significant result is that, although the diluted silver electrode itself shows poor operation stability, the silver current collector has strong electrocatalytic contribution to the BSCF cathode performance on the proton-conducting electrolyte, leading to higher cell performance than that with the gold current collector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001;414(6861):345.

    Article  Google Scholar 

  2. Jiang SP, Chan SH. A review of anode materials development in solid oxide fuel cells. J Mater Sci. 2004;39(14):4405.

    Article  Google Scholar 

  3. Hibino T, Hashimoto A, Suzuki M, Sano M. A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures. J Electrochem Soc. 2002;149(11):A1503.

    Article  Google Scholar 

  4. Fabbri E, Bi L, Pergolesi D, Traversa E. Towards the next generation of solid oxide fuel cells operating below 600 degrees C with chemically stable proton-conducting electrolytes. Adv Mater. 2012;24(2):195.

    Article  Google Scholar 

  5. He F, Wu TZ, Peng RR, Xia CR. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ -BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. J Power Sources. 2009;194(1):263.

    Article  Google Scholar 

  6. Peng RR, Wu TZ, Liu W, Liu XQ, Meng GY. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J Mater Chem. 2010;20(30):6218.

    Article  Google Scholar 

  7. Shao Q, Ge WJ, Lu X, Chen Y, Ding Y, Lin B, Ling Y. A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0.8Ca0.2BaCo4O7+δ . Ceram Int. 2015;41(5):6687.

    Article  Google Scholar 

  8. Wang MS, Wang JX, He CR, Xue YJ, Miao H, Wang Q, Wang WG. A novel composite cathode La0.6Sr0.4CoO3−δ - BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for intermediate temperature solid oxide fuel cells. Ceram Int. 2015;41(3):5017.

    Article  Google Scholar 

  9. Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+δ cathode material for proton-conducting IT-SOFC. Ceram Int. 2015;41(8):10276.

    Article  Google Scholar 

  10. Shao ZP, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004;431(7005):170.

    Article  Google Scholar 

  11. Jeon SY, Lim DK, Kim IH, Singh B, Song SJ. Effectiveness of protonic conduction in Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode in intermediate temperature proton-conducting ceramic-electrolyte fuel cell. J Electrochem Soc. 2014;161(6):F754.

    Article  Google Scholar 

  12. Lim DK, Singh B, Choi MB, Song SJ. Study of hydration/dehydration kinetics of SOFC cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ by electrical conductivity relaxation technique. J Electrochem Soc. 2013;160(8):F764.

    Article  Google Scholar 

  13. Simner S, Anderson M, Pederson L, Stevenson J. Performance variability of La (Sr) FeO3 SOFC cathode with Pt, Ag, and Au current collectors. J Electrochem Soc. 2005;152(9):A1851.

    Article  Google Scholar 

  14. De Silva K, Kaseman B, Bayless D. Silver (Ag) as anode and cathode current collectors in high temperature planar solid oxide fuel cells. Int J Hydrogen Energy. 2011;36(1):779.

    Article  Google Scholar 

  15. Guo YM, Liu Y, Cai R, Chen DJ, Ran R, Shao ZP. Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode on oxygen-ionic conducting electrolyte. Int J Hydrogen Energy. 2012;37(19):14492.

    Article  Google Scholar 

  16. Jiang SP, Love J, Apateanu L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ion. 2003;160(1–2):15.

    Article  Google Scholar 

  17. Guo YM, Zhou YB, Chen DJ, Shi HG, Ran R, Shao ZP. Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrodes in solid oxide fuel cells. J Power Sources. 2011;196(13):5511.

    Article  Google Scholar 

  18. Chen YB, Wang FC, Chen DJ, Dong FF, Park HJ, Kwak C, Shao ZP. Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. J Power Sources. 2012;210:146.

    Article  Google Scholar 

  19. Adanuvor PK, White RE. Oxygen reduction on silver in 6.5 M caustic soda solution. J Electrochem Soc. 1988;135(10):2509.

    Article  Google Scholar 

  20. Kongkanand A, Kuwabata S. Oxygen reduction at silver monolayer islands deposited on gold substrate. Electrochem Commun. 2003;5(2):133.

    Article  Google Scholar 

  21. Egger A, Sitte W. Enhanced oxygen surface exchange of La2NiO4+δ by means of a thin surface layer of silver. Solid State Ion. 2014;258:30.

    Article  Google Scholar 

  22. Shao ZP, Zhou W, Zhu ZH. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci. 2012;57(4):804.

    Article  Google Scholar 

  23. Yamaura H, Ikuta T, Yahiro H, Okada G. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell. Solid State Ion. 2005;176(3–4):269.

    Article  Google Scholar 

  24. Lin Y, Ran R, Zheng Y, Shao ZP, Jin WQ, Xu NP, Ahn J. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-delta as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J Power Sources. 2008;180(1):15.

    Article  Google Scholar 

  25. Yang L, Zuo CD, Wang SZ, Cheng Z, Liu ML. A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv Mater. 2008;20(17):3280.

    Article  Google Scholar 

  26. Guo YM, Lin Y, Ran R, Shao ZP. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−y Y0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. J Power Sources. 2009;193(2):400.

    Article  Google Scholar 

  27. Ma QL, Peng RR, Lin YJ, Gao JF, Meng GY. A high-performance ammonia-fueled solid oxide fuel cell. J Power Sources. 2006;161(1):95.

    Article  Google Scholar 

  28. Peng RR, Wu Y, Yang LZ, Mao ZQ. Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ion. 2006;177(3–4):389.

    Google Scholar 

  29. Lin Y, Ran R, Zheng Y, Shao ZP, Jin WQ, Xu NP, Ahn J. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J Power Sources. 2008;180(1):15.

    Article  Google Scholar 

  30. Lin Y, Ran R, Chen DJ, Shao ZP. A novel Ba0.6Sr0.4Co0.9Nb0.1O3−δ cathode for protonic solid-oxide fuel cells. J Power Sources. 2010;195(15):4700.

    Article  Google Scholar 

  31. Ling YH, Yu J, Lin B, Zhang XZ, Zhao L, Liu XQ. A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3−δ -Ce0.8Sm0.2O2−δ composite cathode for proton-conducting solid oxide fuel cells. J Power Sources. 2011;196(5):2631.

    Article  Google Scholar 

  32. Ding HP, Xie YY, Xue XJ. Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode. J Power Sources. 2011;196(5):2602.

    Article  Google Scholar 

  33. Lin Y, Zhou W, Sunarso J, Ran R, Shao ZP. Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3−δ as a cathode for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2012;37(1):484.

    Article  Google Scholar 

  34. Li ML, Ni M, Su F, Xia CR. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes. J Power Sources. 2014;260:197.

    Article  Google Scholar 

  35. Hou J, Zhu ZW, Qian J, Liu W. A new cobalt-free proton-blocking composite cathode La2NiO4+δ –LaNi0.6Fe0.4O3−δ for BaZr0.1Ce0.7Y0.2O3−δ -based solid oxide fuel cells. J Power Sources. 2014;264:67.

    Article  Google Scholar 

  36. Wang ZQ, Yang WQ, Shafi SP, Bi L, Wang ZB, Peng RR, Xia CR, Liu W, Lu YL. A high performance cathode for proton conducting solid oxide fuel cells. J Mater Chem A. 2015;3(16):8405.

    Article  Google Scholar 

  37. West M, Manthiram A. Synthesis of 3-dimensional silver networks and their application in solid oxide fuel cells. Int J Hydrogen Energy. 2015;40(11):4234.

    Article  Google Scholar 

  38. Adler S. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev. 2004;104(10):4791.

    Article  Google Scholar 

  39. Lin Y, Ran R, Shao ZP. Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ as cathodes for a proton conducting solid-oxide fuel cell. Int J Hydrogen Energy. 2010;35(15):8281.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51502001), the Natural Science Fund of Anhui Province (No. 1608085MB31), the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No. KJ2015A0501), Anhui University Personnel Recruiting Project of Academic and Technical Leaders (No. J10117700069) and the State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL15-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Min Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, TT., Zhu, AK., Li, HB. et al. Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors. Rare Met. 37, 633–641 (2018). https://doi.org/10.1007/s12598-017-0942-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0942-5

Keywords

Navigation