Skip to main content

Advertisement

Log in

Deterioration behavior of c-Si solar cell decorated with silver nanoparticles

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) with well-distributed sizes were prepared by magnetron sputtering on slides and crystalline silicon (c-Si) solar cell following by annealing at different temperatures. The morphologies, optical and photovoltaic performance were investigated in detail. The spectroscopic result shows that two resonance peaks resulting from coupling effect among neighboring particles are difficult to obtain by other chemical methods. The photovoltaic performances reveal that the solar cells decorated with AgNPs significantly are degraded, including a maximal decrease of 20.4 % in short-circuit density and 53.9 % in energy conversion efficiency. The lowest efficiency achieved is 5.85 % for c-Si solar cells with AgNPs annealed at 500 °C. The deterioration should result from the synergetic effect of the intrinsic absorption of single particle and coupling absorption between neighboring particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li D, Pan LJ, Li S, Liu K, Wu SF, Peng W. Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J Phys Chem C. 2013;117(13):6861.

    Article  Google Scholar 

  2. Chen KS, Feng XR, Hu R, Li YB, Xie K, Li Y, Gu HS. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J Alloys Compd. 2013;554(25):72.

    Article  Google Scholar 

  3. Tsai FJ, Wang JY, Huang JJ, Kiang YW, Yang CC. Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Opt Express. 2010;18(102):207.

    Article  Google Scholar 

  4. Beck FJ, Mokkapati S, Polman A, Catchpole KR. Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl Phys Lett. 2010;96(3):033113.

    Article  Google Scholar 

  5. Chen X, Jia BH, Saha JK. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 2012;12(5):2187.

    Article  Google Scholar 

  6. Liu F, Nunzi JM. Enhanced organic light emitting diode and solar cell performances using silver nano-clusters. Org Electronics. 2012;13(9):1623.

    Article  Google Scholar 

  7. Christy LH, Richard PV. Plasmon-sampled surface-enhanced raman excitation spectroscopy. J Phys Chem B. 2003;107(30):7426.

    Article  Google Scholar 

  8. Pillai S, Catchpole KR, Trupke T. Surface plasmon enhanced silicon solar cells. J Appl Phys. 2007;101(9):093105.

    Article  Google Scholar 

  9. Greene JE. Thin Film Nucleation, Growth, and Microstructural Evolution: an Atomic Scale View. In: Rointan BS, Greene JE, editors. Handbook of deposition technologies for films and coatings. 3rd ed. Burlington: Elsevier Inc; 2010. 555.

  10. Noguez C. Optical properties of isolated and supported metal nanoparticles. Opt Mater. 2005;27:1204.

    Article  Google Scholar 

  11. Cheng FX, Xu WY, Wang LS. Research on optical absorption characteristics of Ag nanoparticles. Mod Phys Lett B. 2013;27(11):1350079.

    Article  Google Scholar 

  12. Roman-velazque CE, Noguez C. Substrate effects on the optical properties of spheroidal nanoparticles. Phys Rev B. 2000;15(61):10427.

    Article  Google Scholar 

  13. Kelly KL, Coronado E, Zhao LL. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668.

    Article  Google Scholar 

  14. Su KH, Wei QH, Zhang X. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letts. 2003;3(8):1087.

    Article  Google Scholar 

  15. Atay T, Song JH, Nurmikko AV. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett. 2004;4(9):1627.

    Article  Google Scholar 

  16. Rechberger W, Hohenau A, Leitner A. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220(1):137.

    Article  Google Scholar 

  17. Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C. 2007;111(10):3806.

    Article  Google Scholar 

  18. Baptiste A, William LB. Collective resonances in gold nanoparticle arrays. Phys Rev Lett. 2008;101(14):143902.

    Article  Google Scholar 

  19. Boris NK, Vitaliy AK, Jian Y. Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Phys Rev B. 2008;77(3):035440.

    Article  Google Scholar 

  20. Erin MH, Zou S, George CS. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005;5(6):1065.

    Article  Google Scholar 

  21. Sun ZJ, Zuo XL, Yang Y. Role of surface metal nanoparticles on the absorption in solar cells. Opt Lett. 2012;37(4):641.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51032005 and 51372180), the Key Technology Innovation Project of Hubei Province (No. 2013AAA005) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130143130002).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XM., Chang, HM., Tao, HZ. et al. Deterioration behavior of c-Si solar cell decorated with silver nanoparticles. Rare Met. 38, 136–141 (2019). https://doi.org/10.1007/s12598-015-0648-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0648-5

Keywords

Navigation