Skip to main content
Log in

Preparation of pyramid–SiNWs binary structure with Ag nanoparticles-assisted chemical etching

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

It is an important way to improve the efficiency of solar cells by using the special microstructures of surface. In this work, a pyramid–silicon nanowires (pyramid–SiNWs) binary structure was prepared on the silicon surfaces with the metal-assisted chemical etching (MACE) method. Scanning electron microscope (SEM) was used to observe the micromorphology of the pyramid–SiNWs binary structure. The formation mechanism of the binary structure was discussed. The role of Ag nanoparticles in MACE is considered to be the template and the catalyzer. The optical reflectivity of the silicon surfaces was studied with ultraviolet–visible (UV–Vis) spectrophotometer. Compared with the flat silicon surface and the simple pyramidal structure, the silicon surfaces with the pyramid–SiNWs binary structure achieve a much lower reflectance in a wide range of wavelength. The effect of etching time as a parameter on the reflectivity was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beyer T, Tacke M. Antireflection coatings for PbSe diode lasers. Appl Phys Lett. 1998;73(15):2218.

    Article  Google Scholar 

  2. Rajteri M, Rastello ML, Monticone E. Antireflection coatings for superconducting photodetectors. Nucl Instrum Methods Phys Rev. 2000;444(1–2):461.

    Article  Google Scholar 

  3. Striemer CC, Fauchet PM. Dynamic etching of silicon for broadband antireflection applications. Appl Phys Lett. 2002;81(16):2980.

    Article  Google Scholar 

  4. Deinega A, Valuev I, Potapkin B, Lozovik Y. Antireflective properties of pyramidally textured surfaces. Opt Lett. 2010;35(2):106.

    Article  Google Scholar 

  5. Zhao JH, Wang AH, Green MA, Ferrazza F. 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett. 1998;73(14):1991.

    Article  Google Scholar 

  6. Koynov S, Brandt MS, Srutzmann M. Black non-reflecting silicon surfaces for solar cells. Appl Phys Lett. 2006;88(20):203107.

    Article  Google Scholar 

  7. Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater. 2006;16(3):387.

    Article  Google Scholar 

  8. Peng KQ, Wang X, Lee ST. Silicon nanowire array photoelectrochemical solar cells. Appl Phys Lett. 2008;92(16):163103.

    Article  Google Scholar 

  9. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C. 2008;112(12):4444.

    Article  Google Scholar 

  10. Sun XZ, Lin LH, Li ZC, Zhang ZJ, Feng JY. Fabrication of silver-coated silicon nanowire arrays for surface-enhanced Raman scattering by galvanic displacement processes. Appl Surf Sci. 2009;256(3):916.

    Article  Google Scholar 

  11. Zhang BH, Wang HS, Lu LH, Ai KL, Zhang G, Cheng XL. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv Funct Mater. 2008;18(16):2348.

    Article  Google Scholar 

  12. Peng KQ, Yan YJ, Gao SP, Zhu J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater. 2002;14(16):1164.

    Article  Google Scholar 

  13. Peng KQ, Wu Y, Fang H, Hu JJ, Wu Y, Zhu J, Yan YJ, Lee S. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J. 2006;12(30):7942.

    Article  Google Scholar 

  14. Peng KQ, Wu Y, Fang H, Zhong XY, Xu Y, Zhu J. Uniform axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chem Int Ed. 2005;44(18):2737.

    Article  Google Scholar 

  15. Peng KQ, Lu AJ, Zhang RQ, Lee ST. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater. 2008;18(19):3026.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51032002 and 11274028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZL., Wang, B., Chen, Y. et al. Preparation of pyramid–SiNWs binary structure with Ag nanoparticles-assisted chemical etching. Rare Met. 38, 312–315 (2019). https://doi.org/10.1007/s12598-015-0608-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0608-0

Keywords

Navigation