Skip to main content
Log in

Microstructure of polycrystalline Fe82Ga18 sample with solidification texture

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Main attention of this paper was devoted to studying the effect of solidification texture on microstructure (phase constituents, grain morphology, and magnetic domain structure) of polycrystalline Fe82Ga18 sample. The alloy was melted using button arc melting and solidified in water-cooled copper mold. Optical microscope (OM) results confirm the development of large columnar grains in the solidification microstructure. Phase constitution and magnetic domain structures of the sample were studied by X-ray diffraction (XRD) and magnetic force microscopy (MFM). Results show a single-phase solid solution with an A2 structure for the sample which consists of regularly aligned magnetic domains. Although some maze-like subdomains are found in few regions, well-aligned stripe-like domains are predominant patterns in the sample. It demonstrates the high dependence of grain morphology and magnetic domain structure upon a preferred crystallographic direction during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kellog RA, Flatau AB, Clark AE, Wun-Fogle M, Lograsso TA. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19. Appl Phys. 2002;91(10):7821.

    Article  Google Scholar 

  2. Kellogg RA. Development and modelling of iron–gallium alloys. Ames: Iowa State University; 2003. 1.

    Google Scholar 

  3. Kellogg RA, Russel AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M. Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater. 2004;52(17):5043.

    Article  Google Scholar 

  4. Atulasimha J, Flatau AB. A review of megnetostrictive iron–gallium alloys. Smart Mater Struct. 2011;20(4):043001.

    Article  Google Scholar 

  5. Ueno T, Summers E, Wun-Fogle M, Higuchi T. Micro-magnetostrictive vibrator using iron–gallium alloy. Sens Actuators, A. 2008;148(10):280.

    Article  Google Scholar 

  6. Zhang JJ, Ma T, Van M. Magnetic force microscopy study of heat-treated Fe81Ga19 with different cooling rates. Phys B. 2010;405(15):3129.

    Article  Google Scholar 

  7. Emdadi A. Effect of cooling rate on microstructure and magnetostrictive behavior of galfenol. Rare Met. doi:10.1007/s12598-015-0450-4.

  8. Zhou JK, Li DD, Li JG. Magnetic force microscopy observation of undercooled Fe81Ga19 magnetostrictive alloys. J Phys D. 2008;41(20):205405.

    Article  Google Scholar 

  9. Mudivarthi C, Na SM, Schaefer R, Laver M, Wuttig M, Flatau AB. Magnetic domain observations in Fe–Ga alloys. Magn Magn Mater. 2010;322(14):2023.

    Article  Google Scholar 

  10. Bai F, Li J, Viehland D, Wu D, Lograsso TA. Magnetic force microscopy investigation of domain structures in Fe–x at% Ga single crystals (12 < x < 25). Appl Phys. 2005;98(22):023904-1.

    Google Scholar 

  11. Song HZ, Li YX, Zhao KY, Zeng HR, Hui SX, Li GR, Yin QR, Wu GH. Influence of stress on the magnetic domain structure in Fe81Ga19 alloys. Appl Phys. 2009;105(1):013913-1.

    Article  Google Scholar 

  12. Emdadi AA, Hossein Nedjad S, Badri Ghavifekr H. Effect of solidification texture on the magnetostrictive behavior of Galfenol. Metall Mater Trans A. 2014;45(2):906.

    Article  Google Scholar 

  13. Li JF, Gao XX, Xiao XM, Bao XQ, Zhang MC. Magnetostriction of 〈100〉 oriented Fe–Ga rods with large diameter. Rare Met. doi:10.1007/s12598-013-0127-9.

  14. Ikeda O, Kainuma R, Ohnuma I, Fukamichi K, Ishida K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system. J Alloys Compd. 2002;347(1):198.

    Article  Google Scholar 

  15. Lograsso TA, Summers EM. Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng, A. 2006;416(1):240.

    Article  Google Scholar 

  16. Boisse J, Zapolsky H, Khachaturyan AG. Atomic-scale modeling of nanostructure formation in Fe–Ga alloys with giant magnetostriction: cascade ordering and decomposition. Acta Mater. 2011;59(7):2656.

    Article  Google Scholar 

  17. Lograsso TA, Ross AR, Schlagel DL, Clark AE, Wun-Fogle M. Structural transformation in quenched Fe–Ga alloys. J Alloys Compd. 2003;350(1):95.

    Article  Google Scholar 

  18. Xing Q, Du Y, McQueeney RJ, Lograsso TA. Structural investigations of Fe–Ga alloys: phase relations and megnetostrictive behavior. Acta Mater. 2008;56(16):4536.

    Article  Google Scholar 

  19. Sedlacek R, Blum W, Kratochvil J, Forest S. Subgrain formation during deformation: physical origin and consequences. Metall Mater Trans A. 2002;33(2):319.

    Article  Google Scholar 

  20. Hubert A, Schafer R. Magnetic Domains: The Analysis of Magnetic Microstructures. 3rd ed. Berlin: Springer; 2000. 5.

    Google Scholar 

  21. Engdahl G. Handbook of Giant Magnetostrictive Materials. 1st ed. London: Academic Press; 2000. 78.

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of Center of Excellence for High Performance Materials (CEPMAT) at University of Tehran, Sahand University of Technology, and Mahar Fan Abzar Co. for providing vacuum arc melting, SEM, and MFM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Emdadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emdadi, A. Microstructure of polycrystalline Fe82Ga18 sample with solidification texture. Rare Met. 35, 686–690 (2016). https://doi.org/10.1007/s12598-015-0589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0589-z

Keywords

Navigation