Skip to main content
Log in

Microstructure and mechanical properties of magnesium matrix composite reinforced with carbon nanotubes by ultrasonic vibration

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A novel approach was successfully developed to fabricate bulk carbon nanotube-reinforced Mg matrix composites with uniform carbon nanotubes (CNTs). The approach consists of pre-dispersion and ultrasonic vibration. Homogeneous and single CNTs on flake Zn powder can be achieved simply by slurry blending. The pre-dispersed CNTs were added to Mg melt, and then, the melt was ultrasonically processed. After ultrasonic vibration, the CNTs/Mg–6Zn melt was cast into a metal mold. Most CNTs distribute homogeneously and singly in the bulk composites. Moreover, good interfacial bonding is achieved, and Raman spectroscopy analysis shows that the damage to CNTs is insignificant. Meanwhile, CNTs evidently improve the ultimate tensile strength, yield strength and elongation. The Kelly–Tyson formula agrees well with the experimental tensile value, and the load-transfer efficiency is nearly equal to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cai ZX, Jiang HT, Tang D, Ma Z, Kang Q. Texture and stretch formability of rolled Mg–Zn–RE(Y, Ce, and Gd) alloys at room temperature. Rare Met. 2013;32(5):441.

    Article  CAS  Google Scholar 

  2. Yu M. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637.

    Article  CAS  Google Scholar 

  3. Wong EW. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277(5334):1971.

    Article  CAS  Google Scholar 

  4. Dresselhaus MS, Dresselhaus G, Saito D. Physics of carbon nanotubes. Carbon. 1995;33(7):883.

    Article  CAS  Google Scholar 

  5. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381(6584):678.

    Article  CAS  Google Scholar 

  6. Poncharal P, Wang ZL, Ugarte D. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999;283(5407):1513.

    Article  CAS  Google Scholar 

  7. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon. 1995;33(7):925.

    Article  CAS  Google Scholar 

  8. Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552.

    Article  CAS  Google Scholar 

  9. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613.

    Article  CAS  Google Scholar 

  10. Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 2006;44(9):1624.

    Article  CAS  Google Scholar 

  11. Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev. 2010;55(1):41.

    Article  CAS  Google Scholar 

  12. Zhang Y, Xue Y, Li S, Huang J, Huang C. Study on properties of carbon nanotube/magnesium matrix composite. Mater Sci Forum. 2005;488–489:897.

    Article  Google Scholar 

  13. Miranda A, Alba-Baena N, McKay BJ, Eskin DJ, Ko SH, Shin JS. Study of mechanical properties of an LM24 composite alloy reinforced with Cu-CNT nanofillers, processed using ultrasonic cavitation. Mater Sci Forum. 2013;765:245.

    Article  Google Scholar 

  14. Li Q, Viereckl A, Rottmair CA, Singer RF. Improved processing of carbon nanotube/magnesium alloy composites. Comp Sci Technol. 2009;69(7–8):1193.

    Article  CAS  Google Scholar 

  15. Zeng XS, Zhou GH, Xu Q, Xiong YJ, Luo C, Wu JC. A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A. 2010;527(20):5335.

    Article  Google Scholar 

  16. Yoo SJ, Han SH, Kim WJ. Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scr Mater. 1986;67:129.

    Article  Google Scholar 

  17. Jiang L, Li Z, Fan G, Cao L, Zhang D. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon. 2012;50(5):1993.

    Article  CAS  Google Scholar 

  18. Nie KB, Wang XJ, Hu XS, Xu L, Wu K, Zheng MY. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater Sci Eng A. 2011;528(29–30):5278.

    Article  CAS  Google Scholar 

  19. Suslick KS. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999;29(1):295.

    Article  CAS  Google Scholar 

  20. Yang Y, Lan J, Li XC. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A. 2004;380(1–2):378.

    Article  Google Scholar 

  21. Lan J, Yang Y, Li X. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A. 2004;386(1–2):284.

    Article  Google Scholar 

  22. Cao G, Choi H, Konishi H, Kou S, Lakes R, Li X. Mg–6Zn/1.5% SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J Mater Sci. 2008;43(16):5521.

    Article  CAS  Google Scholar 

  23. Jiang L, Fan GL, Li ZQ, Kai XZ, Zhang D, Chen ZX, Humphries S, Heness G, Yeung WY. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon. 2011;49(6):1965.

    Article  CAS  Google Scholar 

  24. He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater. 2007;19(8):1128.

    Article  CAS  Google Scholar 

  25. Zeng X, Liu Y, Huang Q, Zeng G, Zhou S. Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn. Mater Sci Eng A. 2013;571(6):150.

    Article  CAS  Google Scholar 

  26. Liu ZY, Xiao BL, Wang WG, Ma ZY. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 2012;50(5):1843.

    Article  CAS  Google Scholar 

  27. Choi HJ, Kwon GB, Lee GY, Baea DH. Reinforcement with carbon nanotubes in aluminum matrix composites. Scr Mater. 2008;59(3):360.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51101043, 50801017 and 51001036), the Key Project of Science and Technology Department of Heilongjiang Province of China (No. GC12A109), and the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.201130).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CD., Wang, XJ., Liu, WQ. et al. Microstructure and mechanical properties of magnesium matrix composite reinforced with carbon nanotubes by ultrasonic vibration. Rare Met. 41, 2331–2336 (2022). https://doi.org/10.1007/s12598-015-0561-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0561-y

Keywords

Navigation