Skip to main content
Log in

Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Our previous studies suggested that redox reaction proceeded separately on specific exposed crystal faces of TiO2 nanoparticles. Site-selective deposition of metal or metal oxide on TiO2 specific exposed crystal faces successfully proceeded using the unique reactivity properties on the surface of TiO2 nanoparticles under photoexcitation. A remarkable improvement of photocatalytic activity of shape-controlled brookite and rutile TiO2 nanorods with modification of Fe3+ compounds was observed under visible light. Crystal face-selective metal compound modification on exposed crystal faces of TiO2 nanorods with brookite and rutile phases was successfully prepared. Brookite and rutile TiO2 nanorods prepared by site-selective modification with metal compounds should be ideal visible-light responsive TiO2 photocatalysts because of the remarkable suppression of back electron transfer from TiO2 to oxidized metal compounds on the surface of the TiO2 nanorod with a brookite or rutile phase. In this paper, the development of exposed crystal face-controlled TiO2 nanorods with rutile and brookite phases was described. The obtained rutile and brookite TiO2 nanorod, showing remarkably high activity for degradation of organic compounds compared with the photocatalytic activities of anatase fine particles (ST-01), is one of the most active commercially available photocatalysts for environmental cleanup in Japan. The technology of visible-light responsive treatment for morphology-controlled rutile and brookite TiO2 nanorods by crystal face-selective modification of Fe3+ compounds was also discussed in this paper. The Fe3+ compound-modified rutile and brookite TiO2 nanorods show much higher activity than conventional visible-light responsive N-doped TiO2, which is commercially available in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc. 2014;136(25):8839.

    Article  Google Scholar 

  2. Huang Z, Sun Lv K, Zhang Z, Li M, Li B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Appl Catal B Environ. 2015;164:420.

    Article  Google Scholar 

  3. Zhou P, Wu J, Yu W, Zhao G, Fang G, Cao S. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl Surf Sci. 2014;319:167.

    Article  Google Scholar 

  4. Wang C, Hu Q, Huang J, Zhu C, Deng Z, Shi H, Wu L, Liu Z, Cao Y. Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation. Appl Surf Sci. 2014;292:161.

    Article  Google Scholar 

  5. Ren C, Wang G, Chen Y, Chen Y. Degradation of benzene on Zr-doped TiO2 photocatalysts with a bimodal pore size distribution. Rare Met. 2014;33(6):714.

    Article  Google Scholar 

  6. Lv K, Cheng B, Yu J, Liu G. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys Chem Chem Phys. 2012;14(16):5349.

    Article  Google Scholar 

  7. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69.

    Article  Google Scholar 

  8. Choi W. Pure and modified TiO2 photocatalysts and their environmental applications. Catal Surv Asia. 2006;10(1):16.

    Article  Google Scholar 

  9. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(9):2891.

    Article  Google Scholar 

  10. Hosono E, Fujihara S, Kakiuchi K, Imai H. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J Am Chem Soc. 2004;126(25):7790.

    Article  Google Scholar 

  11. Neale NR, Frank AJ. Size and shape control of nanocrystallites in mesoporous TiO2 films. J Mater Chem. 2007;17(30):3216.

    Article  Google Scholar 

  12. Huang X, Pan C. Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J Cryst Growth. 2007;306(1):117.

    Article  Google Scholar 

  13. Testino A, Bellobono IR, Buscaglia V, Canevali C, D`Arienzo M, Polizzi S, Scotti R, Morazzoni F. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc. 2007;129(12):3564.

    Article  Google Scholar 

  14. Ohno T, Sarukawa K, Matsumura M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem. 2002;26:1167.

    Article  Google Scholar 

  15. Bae E, Murakami N, Ohno T. Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J Mol Catal A Chem. 2009;300:72.

    Article  Google Scholar 

  16. Bae E, Ohno T. Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence of poly(vinyl pyrrolidone). Appl Catal B Environ. 2009;91(9):634.

    Article  Google Scholar 

  17. Bae E, Murakami N, Nakamura M, Ohno T. Effect of chemical etching by sulfuric acid or H2O2–NH3 mixed solution on the photocatalytic activity of rutile TiO2 nanorods. Appl Catal A Gen. 2010;380(1–2):48.

    Article  Google Scholar 

  18. Murakami N, Kurihara Y, Tsubota T, Ohno T. Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C. 2009;113(8):3062.

    Article  Google Scholar 

  19. Ohno T, Higo T, Saito H, Yuan S, Jin Z, Yang Y, Tsubota T. Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J Mol Catal A Chem. 2015;396:261.

    Article  Google Scholar 

  20. Sato S. Photocatalytic activity of NO x -doped TiO2 in the visible-light region. Chem Phys Lett. 1986;123(1–2):126.

    Article  Google Scholar 

  21. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269.

    Article  Google Scholar 

  22. Umebayashi T, Yamaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett. 2002;81(3):454.

    Article  Google Scholar 

  23. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen. 2004;265(1):115.

    Article  Google Scholar 

  24. Ohno T, Tsubota T, Nishijima K, Miyamoto Z. Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem Lett. 2004;33(6):750.

    Article  Google Scholar 

  25. Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett. 2003;32(8):772.

    Article  Google Scholar 

  26. Serpone N, Lawless D. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids—naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir. 1994;10(3):643.

    Article  Google Scholar 

  27. Ikeda S, Sugiyama N, Pal B, Marci G, Palmisano L, Noguchi H, Uosakid K, Ohtani B. Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: correlation with electron-hole recombination kinetics. Phys Chem Chem Phys. 2001;3(2):267.

    Article  Google Scholar 

  28. Kisch H, Zang L, Lange C, Maier WF, Antonius C, Meissner D. Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light. Angew Chem Int Ed. 1998;37(21):3034.

    Article  Google Scholar 

  29. Zang L, Lange C, Abraham I, Storck S, Maier WF, Kisch H. Amorphous microporous titania modified with platinum(IV) chloride—a new type of hybrid photocatalyst for visible light detoxification. J Phys Chem B. 1998;102(52):10765.

    Article  Google Scholar 

  30. Sakthivel S, Janczarek M, Kisch H. Visible Light Activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B. 2004;108(50):19384.

    Article  Google Scholar 

  31. Macyk W, Kisch H. Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. Chem Eur J. 2001;7(9):1862.

    Article  Google Scholar 

  32. Murakami N, Chiyoya T, Tsubota T, Ohno T. Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Appl Catal A Gen. 2008;348(1):148.

    Article  Google Scholar 

  33. Murakami N, Ono A, Nakamura M, Tsubota T, Ohno T. Development of a visible-light-responsive rutile rod by site-selective modification of iron(III) ion on {111} exposed crystal faces. Appl Catal A Gen. 2010;97(1–2):115.

    Article  Google Scholar 

  34. Oliver PM, Watson GW, Kelsey ET, Parker SC. Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J Mater Chem. 1997;7(3):563.

    Article  Google Scholar 

  35. Murakami N, Mahaney OOP, Abe R, Torimoto T, Ohtani B. Double-beam photoacoustic spectroscopic studies on transient absorption of titanium(IV) oxide photocatalyst powders. J Phys Chem C. 2007;111(32):11927.

    Article  Google Scholar 

  36. Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M. Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. J Phys Chem B. 1997;101(33):6415.

    Article  Google Scholar 

  37. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW. Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater. 2010;22(6):2050.

    Article  Google Scholar 

  38. Kobayashi M, Tomita K, Petrykin V, Yin S, Sato T, Yoshimura M, Kakihana M. Hydrothermal synthesis of nanosized titania photocatalysts using novel water-soluble titanium complexes. Solid State Phenom. 2007;124–126:723.

    Article  Google Scholar 

  39. Zhang H, Banfield JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B. 2000;104(15):3481.

    Article  Google Scholar 

  40. Kobayashi M, Petrykin V, Kakihana M, Tomita K. Hydrothermal synthesis and photocatalytic activity of whisker-like rutile-type titanium dioxide. J Am Ceram Soc. 2009;92(S1):S21.

    Article  Google Scholar 

  41. Murakami N, Kamai T, Tsubota T, Ohno T. Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic condition. Catal Commun. 2009;10(6):963.

    Article  Google Scholar 

  42. Ma Z, Zhang Q, Liu J, Yan C, Zhang M, Ohno T. Preparation of luminescent polystyrene microspheres via surface-modified route with rare earth (Eu3+ and Tb3+) complexes linked to 2, 2′-bipyridine. Rare Met. 2014. doi:10.1007/s12598-014-0263-x.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhisa Ohno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, T., Lee, S.Y. & Yang, Y. Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds. Rare Met. 34, 291–300 (2015). https://doi.org/10.1007/s12598-015-0483-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0483-8

Keywords

Navigation