Skip to main content
Log in

Magnetoresistive properties of Ni-doped La0.7Sr0.3MnO3 manganites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

La0.7Sr0.3Mn1−x Ni x O3 (x = 0, 0.025, 0.050 and 0.075) ceramics were prepared by the conventional solid-state reaction method. The partial substitution of Mn by Ni2+ leads to a decrease in cell volume as well as a structural transition from the rhombohedral to the orthorhombic structure. Ni2+ doping increases the electrical resistivity, decreases the semiconductor–metal transition temperature (T ms) and relatively enhances the room temperature magnetoresistance (MR), especially in x = 0.025 and around T ms. With respect to conduction mechanism, the small polaron hopping (SPH) and the variable range hopping (VRH) models were used to examine conduction in the semiconducting region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy YS, Kistaiah P, Reddy CV. Elastic properties of double layered manganites R1.2Sr1.8Mn2O7. Rare Met. 2014;33(2):166.

    Article  Google Scholar 

  2. Asamitsu A, Moritomo Y, Kumai R, Tomioka Y, Tokura Y. Magnetostructural phase transitions in La1−x Sr x MnO3 with controlled carrier density. Phys Rev B. 1996;54(3):1716.

    Article  Google Scholar 

  3. Helmolt RV, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba0.3MnO x ferromagnetic films. Phys Rev Lett. 1993;71(14):2331.

    Article  Google Scholar 

  4. Salamon MB, Jaime M. The physics of manganites: structure and transport. Rev Mod Phys. 2001;73(3):583.

    Article  Google Scholar 

  5. Kallel N, Dezanneau G, Dhahri J, Oumezzine M, Vincent H. Structure, magnetic and electrical behaviour of La0.7Sr0.3Mn1−x Ti x O3 with 0 ≤ x≤0.3. J Magn Magn Mater. 2003;261(1–2):56.

    Article  Google Scholar 

  6. Kuharuangrong S, Dechakupt T, Aungkavattana P. Effects of Co and Fe addition on the properties of lanthanum strontium manganite. Mater Lett. 2004;58(12–13):1964.

    Article  Google Scholar 

  7. Zheng Y, Zhang C, Ran R, Cai R, Shao Z, Farrusseng D. A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3−δ perovskite oxide as both the anode and cathode. Acta Mater. 2009;57(4):1165.

    Article  Google Scholar 

  8. Jaime M, Salamon MB, Rubienstein M, Treece RE, Horwitz JS, Chrisey DB. High-temperature thermopower in La2/3Ca1/3MnO3 films: evidence for polaronic transport. Phys Rev B. 1996;54(17):11914.

    Article  Google Scholar 

  9. Vanitha PV, Singh RS, Natarajan S, Rao CNR. Effect of substitution of Mn3+ by Ni3+ and Co3+ on the charge-ordered states of the rare earth manganates Ln0.5A0.5MnO3. Solid State Commun. 1999;109(3):135.

    Article  Google Scholar 

  10. Righi L, Gorria P, Insausti M, Guiterrez J, Barandiaran JM. Influence of Fe in giant magnetoresistance ratio and magnetic properties of La0.7Ca0.3Mn1−x Fe x O3 perovskite type compounds. J Appl Phys. 1997;81(8):5767.

    Article  Google Scholar 

  11. Zhang LW, Feng G, Liang H, Cao BS, Meihong Z, Zhao YG. The magnetotransport properties of LaMn1−x Cr x O3 manganites. J Magn Magn Mater. 2000;219(2):236.

    Article  Google Scholar 

  12. Maignan A, Damay F, Barnabe A, Martin C, Hervieu M, Raveau B. The effect of Mn-site doping on the magnetotransport properties of CMR manganites. Phil Trans R Soc Lond A. 1998;356(1742):1635.

    Article  Google Scholar 

  13. Toulemonde O, Studer F, Raveau B. Magnetic interactions studies of Co and Ni-doped manganites using soft XMCD. Solid State Commun. 2002;118(2):107.

    Article  Google Scholar 

  14. Sanchez MC, Garcia J, Blasco J, Subias G, Cacho JP. Local electronic and geometrical structure of LaNi1−x Mn x O3+δ  perovskites determined by X-ray-absorption spectroscopy. Phys Rev B. 2002;65(14):144409.

    Article  Google Scholar 

  15. Gutierrez J, Pena A, Barandiaran JM, Pizarro JL, Lezama L, Insausti M, Rojo T. Structural, magnetic and magnetotransport properties of La0.7Pb0.3Mn0.9TM0.1O3 (TM = Fe, Co, Ni) CMR perovskites. J Phys Condens Matter. 2000;12(50):10523.

    Article  Google Scholar 

  16. Hu J, Ji C, Qin H, Chen J, Hao Y, Li Y. Enhancement of room temperature magnetoresistance in La0.65Sr0.35Mn1−x T x O3 (T = Fe and Ni) manganites. J Magn Magn Mater. 2002;241(2–3):271.

    Article  Google Scholar 

  17. Zener C. Interaction between the shells in the transition metals. Phys Rev. 1951;81:440.

    Article  Google Scholar 

  18. Park K. Fabrication and electrical properties of Mn–Ni–Co–Cu–Si oxides negative temperature coefficient thermistors. J Am Ceram Soc. 2005;88(4):862.

    Article  Google Scholar 

  19. Yonglai F, Ong CK. The magnetoresistance effect of La–Ca–Sr–Mn–O perovskites under a very low magnetic field. J Magn Magn Mater. 2000;208(1–2):69.

    Article  Google Scholar 

  20. Wandekar RV, Wani BN, Bharadwaj SR. Crystal structure, electrical conductivity, thermal expansion and compatibility studies of Co-substituted lanthanum strontium manganite system. Solid State Sci. 2009;11(1):240.

    Article  Google Scholar 

  21. Wandekar RV, Wani BN, Bharadwaj SR. Effect of Ni substitution on the crystal structure and thermal expansion behaviour of (La0.8Sr0.2)0.95MnO3. Mater Lett. 2005;59(22):2799.

    Article  Google Scholar 

  22. Daengsakul S, Thomas C, Thomas I, Mongkolkachit C, Siri S, Amornkitbamrung V, Maensiri S. Magnetic and cytotoxicity properties of La1−x Sr x MnO3(0 ≤ x≤0.5) nanoparticles prepared by a simple thermal hydro-decomposition. Nano Scale Res Lett. 2009;4:839.

    Article  Google Scholar 

  23. Joshi L, Keshri S. Magneto-transport properties of Fe-doped LSMO manganites. Measurement. 2011;44(5):938.

    Article  Google Scholar 

  24. Hu XK, Xu MH, Wang ZS, Zhang SY, Wu Q, Si PZ. Magnetoresistance and magnetostriction effects in bulk Dy-doped La2/3Sr1/3MnO3. Solid State Commun. 2009;149(5–6):243.

    Article  Google Scholar 

  25. Kuharuangrong S. Effects of Ni on the electrical conductivity and microstructure of La0.82Sr0.16MnO3. Ceram Inter. 2004;30(2):273.

    Article  Google Scholar 

  26. Pal S, Bose E, Chaudhuri BK, Yang HD, Neeleshwar S, Chen YY. Effect of Ni doping in rare-earth manganite La0.7Pb0.3Mn1−x Ni x O3 (x = 0.0–0.5). J Magn Magn Mater. 2005;293(2):872.

    Article  Google Scholar 

  27. Eshraghi M, Salamati H, Kameli P. The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite. J Alloy Compd. 2007;437(1–2):22.

    Article  Google Scholar 

  28. Troyanchuk IO, Samsonenko NV, Nabiaiek A, Szymczak H. Magnetic interactions and phase transitions in the Co- and Ni-doped manganites. J Magn Magn Mater. 1997;168(3):309.

    Article  Google Scholar 

  29. Blasse G. Ferromagnetic interactions in non-metallic perovskites. J Phys Chem Solids. 1965;26(12):1969.

    Article  Google Scholar 

  30. Kallel N, Oumezzine M, Vincent H. Neutron-powder-diffraction study of structural and magnetic structure of La0.7Sr0.3Mn1−x Ti x O3 (x = 0, 0.10, 0.20, and 0.30). J Magn Magn Mater. 2008;320(12):1810.

    Article  Google Scholar 

  31. Hwang HY, Palstra TTM, Cheong SW, Batlogg B. Pressure effects on the magnetoresistance in doped manganese perovskites. Phys Rev B. 1995;52(21):15046.

    Article  Google Scholar 

  32. Mostafa AG, Abdel-Khalek EK, Daoush WM, Moustfa SF. Study of some co-precipitated manganite perovskite samples-doped iron. J Magn Magn Mater. 2008;320(24):3356.

    Article  Google Scholar 

  33. Mahesh R, Mahendiran R, Raychaudhuri AK, Rao CNR. Effect of particle size on the giant magnetoresistance of La0.7Ca0.3MnO3. Appl Phys Lett. 1996;68:2291.

    Article  Google Scholar 

  34. Roy B, Poddar A, Das S. Electrical transport properties and magnetic cluster glass behavior of Nd0.7Sr0.3MnO3 nanoparticles. J Appl Phys. 2006;100(10):104318.

    Article  Google Scholar 

  35. Gupta A, Gong GQ, Xiao G, Lecoeur P, Trouilloud P, Wang YY, Dravid VP, Sun JZ. Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys Rev B. 1996;54(22):R15629.

    Article  Google Scholar 

  36. Dubourdieu C, Audier M, Senature JP, Pierre J. Effects of the microstructure on the magnetotransport properties of polycrystalline manganite films grown by metalorganic chemical vapor deposition. J Appl Phys. 1999;86(12):6945.

    Article  Google Scholar 

  37. Mathur ND, Burnell G, Isaac SP, Jackson TJ, Teo BS, Driscoll JLM, Cohen LF, Evetts JE, Blamire MG. Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature. 1997;387(6630):266.

    Article  Google Scholar 

  38. Hwang H, Cheong SW, Ong NP, Batlogg B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett. 1996;77(10):2041.

    Article  Google Scholar 

  39. Ziese M, Srinitiwarawong C. Polaronic effects on the resistivity of manganite thin films. Phys Rev B. 1998;58(17):11519.

    Article  Google Scholar 

  40. Chen XJ, Zhang CL, Gardner JS, Sarrao JL, Almasan CC. Variable-range-hopping conductivity of the half-doped bilayer manganite LaSr2Mn2O7. Phys Rev B. 2003;68:064405.

    Article  Google Scholar 

  41. Chen XJ, Zhang CL, Almasan CC, Gardner JS, Sarrao JL. Small-polaron hopping conduction in bilayer manganite La1.2Sr1.8Mn2O7. Phys Rev B. 2003;67(9):094426.

    Article  Google Scholar 

  42. Ramirez AP. Colossal magnetoresistance. J Phys Condens Matter. 1997;9:8171.

    Article  Google Scholar 

  43. Abdelmoula N, Rouhou AC, Reversat L. Structural, magnetic and magnetoresistive properties of La0.7Sr0.3−x Na x MnO3 manganites. J Phys Condens Matter. 2001;13(3):449.

    Article  Google Scholar 

  44. Mott NF, Davis EA. Electronics Process in Non Crystalline Materials. Oxford: Clarendon Press; 1979. 32.

    Google Scholar 

  45. Austin IG, Mott NF. Polarons in crystalline and non-crystalline materials. Adv Phys. 1969;18(71):41.

    Article  Google Scholar 

  46. Mollah S, Huang HL, Yang HD, Pal S, Taran S, Chaudhuri BK. Non-adiabatic small-polaron hopping conduction in Pr0.65Ca0.35−x Sr x MnO3 perovskites above the metal–insulator transition temperature. J Magn Magn Mater. 2004;284:383.

    Article  Google Scholar 

  47. Pal S, Banerjee A, Rozenberg E, Chaudhuri BK. Polaron hopping conduction and thermoelectric power in LaMnO3+δ . J Appl Phys. 2001;89(9):4955.

    Article  Google Scholar 

  48. Viret M, Ranno L, Coey JMD. Magnetic localization in mixed-valence manganites. Phys Rev B. 1997;55(13):8067.

    Article  Google Scholar 

  49. Holstein T. Studies of polaron motion: part II. The “small” polaron. Ann Phys. 1959;8(3):343.

    Article  Google Scholar 

  50. Snyder GJ, Hiskes R, Dicarolis S, Beasley MR, Geballe TH. Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys Rev B. 1996;53(21):14434.

    Article  Google Scholar 

  51. Lakshmi YK, Venugopal RP. Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La0.67Na0.33MnO3 manganite. J Alloy Compd. 2009;470(1–2):67.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Sohag University in Egypt. The authors also would like to thank H F Mohamed for his continuous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Moez Ahmed Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.M., Mohamed, A.EM.A., Abdellateef, M.A. et al. Magnetoresistive properties of Ni-doped La0.7Sr0.3MnO3 manganites. Rare Met. 35, 551–558 (2016). https://doi.org/10.1007/s12598-015-0465-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0465-x

Keywords

Navigation