Skip to main content
Log in

Intensified bioleaching of low-grade molybdenite concentrate by ferrous sulfate and pyrite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be accelerated with the addition of either ferrous sulfate or pyrite in bioleaching medium. Pyrite has better enhancing effect than ferrous sulfate, and the highest molybdenum leaching rate in pyrite-added solutions is 20.85 %, increasing by 12.64 % compared with that in 9 K leaching system. Molybdenum leaching rate does not increase linearly with the increase of the addition of either ferrous sulfate or pyrite in each type solution. Great amounts of [NH4Fe3(SO4)2(OH)6] and [KFe3(SO4)2(OH)6] with different morphologies will be deposited on molybdenite ores when the additions of Fe from ferrous sulfate or pyrite exceed that from 9 K leaching system by 0.5 times, and these deposits hinder the oxidation dissolution of molybdenite to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdollahi H, Shafaei SZ, Noaparst M, Manafi Z, Aslan N. Bio-dissolution of Cu, Mo and Re from molybdenite concentrate using mix mesophilic microorganism in shake flask. Trans Nonferrous Met Soc China. 2013;23(1):219.

    Article  Google Scholar 

  2. Yu J, Yang HY, Chen YJ, Fan YJ. Extraction of molybdenum from low grade molybdenum concentrates. J Northeast Univ (Nat Sci). 2011;32(8):1141.

    Google Scholar 

  3. Deng GC, Xing NN, Li GF, Ju ZN, Ye LL. Effect of roasting fluxes for recovery of molybdenum on low grade molybdenum concentrate. J Liao Ning Univ (Nat Sci). 2009;36(4):349.

    Google Scholar 

  4. Fu JG, Zhong H, Wu JL, Pu XM. Wet leaching of molybdenite at atmospheric temperature and pressure. Metal Mine. 2004;12:35.

    Google Scholar 

  5. Parsons GJ, Brimacombe JK, Peters E. Computer simulation of a molybdenite leaching process using dilute nitric acid. Hydrometallurgy. 1987;17(2):133.

    Article  Google Scholar 

  6. Vizsolyi A, Peters E. Nitric acid leaching of molybdenite concentrates. Hydrometallurgy. 1980;6(1):103.

    Article  Google Scholar 

  7. Gu H, Li HG, Liu MS. Study on new wet leaching of molybdenite. China Molybd Ind. 1997;10:29.

    Google Scholar 

  8. Khoshnevisan A, Yoozbashizade H, Mozammel M, Sadrnezhaad SK. Kinetics of pressure oxidative leaching of molybdenite concentrate by nitric acid. Hydrometallurgy. 2012;111(2):52.

    Article  Google Scholar 

  9. Cao ZF, Zhong H, Liu GY, Qiu YR, Wang S. Molybdenum extraction from molybdenite concentrate in NaCl electrolyte. J Taiwan Inst Chem Eng. 2010;41(3):338.

    Article  Google Scholar 

  10. Cao ZF, Zhong H, Qiu ZH, Liu GY, Zhang WX. A novel technology for molybdenum extraction from molybdenite concentrate. Hydrometallurgy. 2009;99(1):2.

    Article  Google Scholar 

  11. Barr DS, Lindstorm RE, Hendrix JL. Control of the chlorate factor in electrooxidation leaching of molybdenum concentrates. Int J Miner Process. 1975;2(4):303.

    Article  Google Scholar 

  12. Barr DS, Scheiner BJ, Hendrix JL. Examination of the chlorate factor in electro-oxidation leaching of molybdenite concentrates using flow-through cells. Int J Miner Process. 1977;4(2):83.

    Article  Google Scholar 

  13. Askari ZMA, Hiroyoshi N, Tsunekawa M, Vaghar R, Oliazadeh M. Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy. 2005;80(2):23.

    Article  Google Scholar 

  14. Gregory JO, Thomas RC. Bioleaching of molybdenite. Hydrometallurgy. 2008;93(1):10.

    Google Scholar 

  15. Li CX, Luo YQ, Ren RC, Cheng Q, Man D. Enriching metal elements of carbonaceous molybdenum-nickel ore before leaching. Chin J Rare Met. 2013;37(2):289.

    Google Scholar 

  16. Jia JP, Shen ZM, Zhou H. Development of electrochemical methods in waste water treatment. Shanghai Environ Sci. 1999;18(1):29.

    Google Scholar 

  17. Ehrlich HL. Past, present and future of biohydrometallurgy. Hydrometallurgy. 2001;59(2):127.

    Article  Google Scholar 

  18. Wu B, Wen JK, Chen BW, Yao GC, Wang DZ. Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite. Rare Met. 2014;33(5):622.

    Article  Google Scholar 

  19. Cao ZF, Zhong H, Wen ZQ, Fu JG, Ding C. Research on ultrasonic electro-oxidation process of MoS2 concentrate. J China Univ Min Technol. 2009;38(2):229.

    Google Scholar 

  20. Chen JW, Gao CJ, Zhang QX, Xiao LS, Zhang GQ. Leaching of nickel-molybdenum sulfide ore with sulfolobus metallicus. Chin J Process Eng. 2009;9(2):257.

    Google Scholar 

  21. Roya MG, Seyed MB, Seyyed MM. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans. Hydrometallurgy. 2011;106(1):26.

  22. Pradhan D, Patra AK, Kim DJ, Chung HS, Lee SW. A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst. Hydrometallurgy. 2013;131(1):114.

    Article  Google Scholar 

  23. Tong LL, Yang HY, Zhang Y, Zhang GP. Effect of acidithiobacillus ferrooxidans on leaching out chalcopyrite and pentlandite. J Northeast Univ (Nat Sci). 2010;31(11):1591.

  24. Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by acidithiobacillus ferrooxidans. Miner Eng. 2006;19(9):964.

  25. Jensen AB, Webb C. Ferrous sulfate oxidation using thiobacillus ferrooxidans: a review. Process Biochem. 1995;30(3):231.

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51304151 and 51174062), and the High-Tech Research and Development Program of China (No. 2012AA061501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yang, HY., Tong, LL. et al. Intensified bioleaching of low-grade molybdenite concentrate by ferrous sulfate and pyrite. Rare Met. 34, 207–214 (2015). https://doi.org/10.1007/s12598-014-0437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0437-6

Keywords

Navigation