Skip to main content
Log in

Hot deformation behavior and microstructure evolution of TiC–Al2O3/Al composites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hot compression behavior of TiC–Al2O3/Al composites was studied using the Gleeble-1500 system at a temperature range of 300–550 °C and at strain rate range of 0.01–10.00 s−1. The associated structural changes were studied by TEM observations. The results show that stress level decreases with deformation temperature increasing and strain rate decreasing, which can be represented by a Zener–Hollomon parameter in an exponent-type equation with hot deformation activation energy Q of 172.56 kJ·mol−1. Dynamic recovery occurs easily when strain rates are less than 10.00 s−1. Dynamic recrystallization can occur at strain rate of 10.00 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li B, Liu Y, Li J, Cao H, He L. Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering. J Mater Process Technol. 2010;210(1):91.

    Article  Google Scholar 

  2. Omura N, Kobashi M, Kanetake N. Fabrication of the TiC/6061 aluminum alloy composite by the combination process of combustion reaction and vortex technique. J Jpn Inst Met. 2004;68(4):211.

    Article  Google Scholar 

  3. Liu LZ, Ying GB, Zhu J, Lin H, Zhu CC. High-temperature compressive properties of TiC–TiB2/Cu composites prepared by self-propagating high-temperature synthesis. Rare Met. 2014;33(1):95.

    Article  Google Scholar 

  4. Mortensen A, Kouzeli M, Weber L, San Marchi C. Corrigendum to: on the tensile behaviour of infiltrated alumina particle reinforced aluminium composites. Acta Materialia. 2003;51(20):6493.

    Article  Google Scholar 

  5. Zhang H, Jin N, Chen J. Hot deformation behavior of Al–Zn–Mg–Cu–Zr aluminum alloys during compression at elevated temperature. Trans Nonferr Metals Soc China. 2011;21(3):437.

    Article  Google Scholar 

  6. Talamantes-Silva J, Abbod MF, Cabrera ESP. Microstructure modelling of hot deformation of Al–1%Mg alloy. Mater Sci Eng A. 2009;525(1–2):147.

    Article  Google Scholar 

  7. Zhang H, Li L, Yuan D, Peng DS. Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures. Mater Charact. 2007;58(2):168.

    Article  Google Scholar 

  8. Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abolhasani A. Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater Des. 2011;32(10):4955.

    Article  Google Scholar 

  9. Wang QJ, Liu F, Du ZZ, Wang JY. Hot-compression deformation behavior of Cu–Cr–Zr alloy. Chin J Rare Met. 2014;37(5):687.

    Google Scholar 

  10. Sorensen NJ, Suresh S, Tvergaard V, Needleman A. Effects of reinforcement orientation on the tensile response of metal-matrix composites. Mater Sci Eng A. 1995;197(1):1.

    Article  Google Scholar 

  11. Vasudevan AK, Richmond O, Zok F, Embury JD. The influence of hydrostatic pressure on the ductility of Al SiC composites. Mater Sci Eng A. 1989;107:63.

    Article  Google Scholar 

  12. Cavaliere P, Cerri E, Leo P. Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite. Comp Sci Technol. 2004;64(9):1287.

    Article  Google Scholar 

  13. Robi PS, Dixit US. Application of neural networks in generating processing map for hot working. J Mater Process Technol. 2003;142(1):289.

    Article  Google Scholar 

  14. Ebrahimi GR, Zarei-Hanzaki A, Haghshenas M, Arabshahi H. The effect of heat treatment on hot deformation behaviour of Al 2024. J Mater Process Technol. 2008;206(1–3):25.

    Article  Google Scholar 

  15. Jin N, Zhang H, Han Y, Wu WX, Chen JH. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater Charact. 2009;60(6):530.

    Article  Google Scholar 

  16. Yang XW, Lai ZH, Zhu JC, Liu Y, He D. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy. Mater Sci Eng B. 2012;177(19):1721.

    Article  Google Scholar 

  17. Liu XY, Pan QL, He YB, Li WB, Liang WJ, Yin ZM. Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation. Mater Sci Eng A. 2009;500(1–2):150.

    Article  Google Scholar 

  18. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219.

    Article  Google Scholar 

  19. Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000;283(1–2):274.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Inner Mongolia Science and Technology Reward Foundation (No. 20101707), the Inner Mongolia Natural Science Foundation (No. 2013MS0804), the Inner Mongolia High School Scientific Research Foundation (No. NJZZ14056), and the Inner Mongolia University of Technology Foundation (No. ZD20120015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RY., Shi, ZM. & Zhang, XM. Hot deformation behavior and microstructure evolution of TiC–Al2O3/Al composites. Rare Met. 34, 725–730 (2015). https://doi.org/10.1007/s12598-014-0274-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0274-7

Keywords

Navigation