Skip to main content
Log in

An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment: revisited

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Mishra et al. (Ann Oper Res 254(1–2):165–190, 2017) proposed an EOQ model for a deteriorating seasonal product where demand was considered as a function of stock and selling price. Their model practiced preservation technology in order to control the deterioration rate. Further, shortages were allowed and two different scenarios, complete backordering and partial backordering were dealt with in individual cases. The model jointly optimized selling price, ordering frequency and investment in preservation technology under a profit maximization scenario. The problem they investigated depicts a practical real-life scenario, but the mathematical modelling is incorrect. Thus, the numerical results, special cases and managerial insights are debatable. Realizing the significant contribution of the model in question to the existing literature, we revisit the model to provide a corrected comprehensive version. The present model’s optimality has been proved mathematically. Further, the model has been validated using numerical analysis. Sensitivity analysis has been performed to test the robustness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Mishra, U., Cárdenas-Barrón, L.E., Tiwari, S., Shaikh, A.A., Treviño-Garza, G.: An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment. Ann. Oper. Res. 254(1–2), 165–190 (2017)

    Article  Google Scholar 

  2. Dye, C.Y., Hsieh, T.P.: An optimal replenishment policy for deteriorating items with effective investment in preservation technology. Eur. J. Oper. Res. 218(1), 106–112 (2012)

    Article  Google Scholar 

  3. Zhang, J., Bai, Z., Tang, W.: Optimal pricing policy for deteriorating items with preservation technology investment. J. Ind. Manag. Optim. 10(4), 1261–1277 (2014)

    Google Scholar 

  4. He, Y., Huang, H.: Optimizing inventory and pricing policy for seasonal deteriorating products with preservation technology investment. J. Ind. Eng. 2013 (2013)

  5. Hsieh, T.P., Dye, C.Y.: A production–inventory model incorporating the effect of preservation technology investment when demand is fluctuating with time. J. Comput. Appl. Math. 239, 25–36 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra K. Jaggi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} TP(p,\alpha ,n) & = \frac{{p\beta D(p)\gamma^{2} T^{2} }}{2n} + pD(p)T - cD(p)\gamma T - \frac{{cD(p)(\lambda (\alpha ) + \beta )\gamma^{2} T^{2} }}{2n} \\ & \quad - cD(p)T(1 - \gamma ) - \frac{{hD(p)\gamma^{2} T^{2} }}{2n} + \frac{sD(p)}{n}\left( {2\gamma T^{2} - \gamma^{2} T^{2} - T^{2} } \right) - nA - \alpha T \\ \end{aligned}$$
(46)

All the second order derivatives are

$$\frac{{\partial^{2} TP}}{\partial \alpha \partial p} = \frac{{ucD'(p)\gamma^{2} T^{2} \lambda (\alpha )}}{2n} = - \frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}$$
(47)
$$\frac{{\partial^{2} TP}}{\partial p\partial \alpha } = - \frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}$$
(48)
$$\frac{{\partial^{2} TP}}{{\partial p^{2} }} = - \frac{{b(\beta \gamma^{2} T^{2} + 2nT)}}{n}$$
(49)

Appendix 2

Lemma 1

For a fixed number of ordering frequency n, there exist a unique \(\alpha^{*}\) and \(p^{*}\) if \((2D(p)\beta - cb\lambda (\alpha )) > 0\).

The second condition for sufficiency is,

$$\left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) > 0$$
(50)

All the second order derivatives are given in “Appendix 1”.

$$\begin{aligned} \left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) & = \left( {\frac{{u^{2} cD(p)\gamma^{2} T^{2} \lambda (\alpha )}}{2n}} \right)\left( {\frac{{b(\beta \gamma^{2} T^{2} + 2nT)}}{n}} \right) \\ & \quad - \left( {\frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}} \right)^{2} \\ \end{aligned}$$
(51)
$$\left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) = \frac{{u^{2} c\gamma^{2} T^{2} \lambda (\alpha )}}{{4n^{2} }}\left( \begin{aligned} 4D(p)bnT + b\gamma^{2} T^{2} (2D(p)\beta \hfill \\ - cb\lambda (\alpha )) \hfill \\ \end{aligned} \right)$$
(52)
$${\text{Since}}\;\lambda (\alpha ) < < 1\;{\text{and}}\;b < 1 \Rightarrow (2D(p)\beta - cb\lambda (\alpha )) > 0$$
(53)

Hence

$$\left( {4D(p)bnT + b\gamma^{2} T^{2} (2D(p)\beta - cb\lambda (\alpha ))} \right) > 0$$
(54)

This implies that

$$\frac{{u^{2} c\gamma^{2} T^{2} \lambda (\alpha )}}{{4n^{2} }}\left( {4D(p)bnT + b\gamma^{2} T^{2} (2D(p)\beta - cb\lambda (\alpha ))} \right) > 0\quad \forall \, (2D(p)\beta - cb\lambda (\alpha )){ > 0}$$
(55)

Appendix 3

$$\begin{aligned} TP(p,\alpha ,n) & = \frac{{p\beta D(p)\gamma^{2} T^{2} }}{2n} + \frac{pD(p)T}{n}\left[ {\left( {1 - \gamma } \right) - \frac{\eta T}{2n}\left( {1 - \gamma } \right)^{2} } \right] - cD(p)\gamma T \\ & \quad - \frac{{cD(p)(\lambda (\alpha ) + \beta )\gamma^{2} T^{2} }}{2n} - cD(p)T(1 - \gamma ) - \frac{{cD(p)\eta T^{2} }}{2n}\left( {1 - \gamma } \right)^{2} \\ & \quad - \frac{{hD(p)\gamma^{2} T^{2} }}{2n} - \frac{sD(p)}{2n}\left( {2\gamma T^{2} - \gamma^{2} T^{2} - T^{2} } \right) - nsD(p) + \\ & \quad \frac{sD(p)\eta T}{2}\left( {1 - \gamma } \right) - \frac{{c_{1} D(p)\eta T^{2} }}{2n}\left( {1 - \gamma } \right)^{2} - nA - \alpha T \\ \end{aligned}$$
(56)

All the second order derivatives are

$$\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }} = - \frac{{u^{2} cD(p)\gamma^{2} T^{2} \lambda (\alpha )}}{2n}$$
(57)
$$\frac{{\partial^{2} TP}}{\partial \alpha \partial p} = \frac{{ucD'(p)\gamma^{2} T^{2} \lambda (\alpha )}}{2n} = - \frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}$$
(58)
$$\frac{{\partial^{2} TP}}{\partial p\partial \alpha } = - \frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}$$
(59)
$$\frac{{\partial^{2} TP}}{{\partial p^{2} }} = - \frac{b}{2n}\left[ {\beta \gamma^{2} T^{2} + (1 - \gamma )\left[ {1 - T(1 - \gamma ))} \right]} \right]$$
(60)

Appendix 4

Lemma 2

For a fixed number of ordering frequency n, there exist a unique \(\alpha^{*}\) and \(p^{*}\) if \((D(p)\beta - cb\lambda (\alpha )) > 0\).

The second condition for sufficiency is

$$\left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) > 0.$$
(61)

All the second order derivatives are given in “Appendix 3”.

$$\begin{aligned} & \left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) \\ & \quad = \left( { - \frac{b}{2n}\left[ {\beta \gamma^{2} T^{2} + (1 - \gamma )\left[ {1 - T(1 - \gamma ))} \right]} \right]} \right)\left( {\frac{{b(\beta \gamma^{2} T^{2} + 2nT)}}{n}} \right) - \left( {\frac{{ucb\gamma^{2} T^{2} \lambda (\alpha )}}{2n}} \right)^{2} \\ \end{aligned}$$
(62)
$$\left( {\left( {\frac{{\partial^{2} TP}}{{\partial p^{2} }}.\frac{{\partial^{2} TP}}{{\partial \alpha^{2} }}} \right) - \left( {\frac{{\partial^{2} TP}}{\partial p\partial \alpha }.\frac{{\partial^{2} TP}}{\partial \alpha \partial p}} \right)} \right) = \frac{{u^{2} cb\gamma^{2} T^{2} \lambda (\alpha )}}{{4n^{2} }}\left( \begin{aligned} D(p)(1 - \gamma )(1 - T + T\gamma ) \hfill \\ - cb\gamma^{2} T^{2} \lambda (\alpha ) + D(p)\beta \gamma^{2} T^{2} \hfill \\ \end{aligned} \right)$$
(63)
$${\text{Since}}\;\lambda (\alpha ) < < 1\;{\text{and}}\;b < 1 \Rightarrow (D(p)\beta - cb\lambda (\alpha )) > 0$$
(64)

Hence

$$\left( {D(p)\beta \gamma^{2} T^{2} + D(p)(1 - \gamma )(1 - T + T\gamma ) - cb\gamma^{2} T^{2} \lambda (\alpha )} \right) > 0$$
(65)

This implies that

$$\frac{{u^{2} c\gamma^{2} T^{2} \lambda (\alpha )}}{{4n^{2} }}\left( \begin{aligned} D(p)\beta \gamma^{2} T^{2} + D(p)(1 - \gamma )(1 - T + T\gamma ) \hfill \\ - cb\gamma^{2} T^{2} \lambda (\alpha ) \hfill \\ \end{aligned} \right) > 0\quad \forall (D(p)\beta - cb\lambda (\alpha )) > 0$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyamvada, Rini, Khanna, A. et al. An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment: revisited. OPSEARCH 58, 181–202 (2021). https://doi.org/10.1007/s12597-020-00474-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-020-00474-5

Keywords

Navigation