Skip to main content
Log in

Inventory models for non-instantaneous deteriorating items with expiration dates under the joined effect of preservation technology and linearly time-dependent holding cost when order-size linked to advance payment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate a joint replenishment and preservation technology investment problem for non-instantaneous deteriorating items in which preservation technology investment affects not only the deterioration rate but also the length of the non-deterioration period. Regarding efforts towards delaying the deterioration process, the longer these items are kept in storage, the higher is the holding cost. Therefore, we consider the holding cost as a linearly increasing function of storage period. Along these lines, the retailer needs to balance the cost of investment in the preservation technology to reduce the deterioration rate and the increased total profit due to the decreased deterioration rate. This study discusses the scenario where the supplier offers the retailer the option to prepay a predefined percentage of the purchase cost if their order quantity exceeds or equals the minimum order quantity. Otherwise, the retailer takes a loan from a bank to prepay the entire purchasing cost. The main purpose of this study is to provide the best combined replenishment strategies and preservation technology investment under the abovementioned scenario by ensuring the maximum profit. A solution procedure is developed to determine the optimal solutions, and an algorithm is created by combining all theoretical results derived from the analytical study. Numerical examples are used to verify the theoretical results. Sensitivity analysis revealed some useful managerial insights. Results reveal that the retailer places orders under the conditions of a higher frequency with smaller order quantities to avoid excessive shortage costs when the holding cost is a linearly increasing function of the storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfares, H. M. (2007). Inventory model with stock-level dependent demand rate and variable holding cost. International Journal of Production Economics, 108(1), 259–326.

    Article  Google Scholar 

  • Ahmad, B., & Benkherouf, L. (2018). Economic-order-type inventory models for non-instantaneous deteriorating items and backlogging. RAIRO-Operations Research, 52, 895–901.

    Article  Google Scholar 

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Article  Google Scholar 

  • Bardhan, S., Pal, H., & Giri, B. C. (2019). Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand. Operations Research, 19, 347–368.

    Article  Google Scholar 

  • Chen, S.-C., & Teng, J.-T. (2014). Retailer’s optimal ordering policy for deteriorating items with maximum lifetime under supplier’s trade credit financing. Appl. Math. Model., 38(15), 4049–4061.

    Article  Google Scholar 

  • Chaudhari, U., Shah, N. H., & Jani, M. Y. (2020). Inventory modelling of deteriorating item and preservation technology with advance payment scheme under quadratic demand. Optimization and Inventory Management. https://doi.org/10.1007/978-981-13-9698-4_4

    Article  Google Scholar 

  • Chung, K.-J., Liao, J.-J., Srivastava, H. M., Lee, S.-F., & Lin, S.-D. (2021). The EOQ model for deteriorating items with a conditional trade credit linked to order quantity in a supply chain system. Mathematics, 9, 1–34.

    Article  Google Scholar 

  • Chung, K.-J., Liao, J.-J., Lin, S.-D., Chuang, S.-T., & Srivastava, H. M. (2019). The inventory model for deteriorating items under conditions involving cash discount and trade credit. Mathematics, 7, 1–20.

    Article  Google Scholar 

  • Dye, C.-Y., & Hsieh, T.-P. (2012). An optimal replenishment policy for deteriorating items with effective investment in preservation technology. European Journal of Operational Research, 218, 106–112.

    Article  Google Scholar 

  • Dye, C.-Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41, 872–880.

    Article  Google Scholar 

  • Diabat, A., Taleizadeh, A. A., & Lashgari, M. (2017). A lot sizing model with partial down-stream delayed payment, partial up-stream advance payment, and partial backordering for deteriorating items. Journal of Manufacturing Systems, 45, 322–342.

    Article  Google Scholar 

  • Duary, A., Das, S., Arif, M. G., Abualnaja, K. M., Khan, M. A. A., Zakarya, M., & Shaikh, A. A. (2022a). Advance and delay in payments with the price-discount inventory model for deteriorating items under capacity constraint and partially backlogged shortages. Alexandria Engineering Journal, 61(2), 1735–1745.

    Article  Google Scholar 

  • Duary, A., Khan, M. A. A., Pani, S., Shaikh, A. A., Hezam, I. M., Alraheedi, A. F., & Gwak, J. (2022b). Inventory model with nonlinear price-dependent demand for non-instantaneous decaying items via advance payment and installment facility. AIMS Mathematics, 7(11), 19794–19821.

    Article  Google Scholar 

  • Ferguson, M., Jayaraman, V., & Souza, G. C. (2007). Note: An application of the EOQ model with nonlinear holding cost to inventory management of perishables. European Journal of Operational Research, 180(1), 485–490.

    Article  Google Scholar 

  • Feng, L., Chan, Y.-L., & Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing policies for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. International Journal of Production Economics, 185, 11–20.

    Article  Google Scholar 

  • Ghare, P. M., & Schrader, G. P. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, 14, 238–243.

    Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134, 1–16.

    Article  Google Scholar 

  • Geetha, K. V., & Udayakumar, R. (2016). Optimal lot sizing policy for non-instantaneous deteriorating items with price and advertisement dependent demand under partial backlogging. International Journal of Applied and Computational Mathematics, 2, 171–193.

    Article  Google Scholar 

  • Hsu, P.-H., Wee, H.-M., & Teng, H.-M. (2006). Optimal lot sizing for deteriorating items with expiration date. Journal of Information and Optimization Sciences, 27, 271–286.

    Article  Google Scholar 

  • Hsu, P.-H., Wee, H.-M., & Teng, H.-M. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124(2), 388–394.

    Article  Google Scholar 

  • Huang, H., He, Y., & Li, D. (2018). Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration. Journal of Cleaner Production, 180, 280–296.

    Article  Google Scholar 

  • Hou, K. L., Srivastava, H. M., Lin, L. C., & Lee, S. F. (2021). The impact of system deterioration and product warranty on optimal lot sizing with maintenance and shortages backordered. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(3), 103.

    Article  Google Scholar 

  • Hou, K.-L., Srivastava, H. M., Lin, L.-C., Sarker, B. R., & Lee, S.-F. (2022). Optimal replenishment policy for non-instantaneous deteriorating items with stochastic demand under advance sales discount and available capacity. Mathematicsl Methods in the Applied Sciences, 45, 11433–11448.

    Article  Google Scholar 

  • Iqbal, M. W., & Sarkar, B. (2020). Application of preservation technology for lifetime dependent products in an integrated production system. Journal of Industrial & Management Optimization, 16, 141–167.

    Article  Google Scholar 

  • Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86–112.

    Article  Google Scholar 

  • Khan, M. A. A., Shaikh, A. A., Panda, G. C., Konstantaras, I., & Taleizadeh, A. A. (2019). Inventory system with expiration date: Pricing and replenishment decisions. Computers & Industrial Engineering, 132, 232–247.

    Article  Google Scholar 

  • Khan, M. A. A., Shaikh, A. A., Panda, G. C., Konstantaras, I., & Cárdenas-Barrón, L. E. (2020). The effect of advance payment with discount facility on supply decisions of deteriorating products whose demand is both price and stock dependent. International Transactions in Operational Research, 27(3), 1343–1367.

    Article  Google Scholar 

  • Khan, M. A. A., Cárdenas-Barrón, G. L. E., Treviño-Garza, G., & Céspedes-Mota, A. (2023). A prepayment installment decision support framework in an inventory system with all-units discount against link-to-order prepayment under power demand pattern. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2022.119247

    Article  Google Scholar 

  • Liu, G.-W., Zhang, J.-X., & Tang, W.-S. (2015). Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand. Annals of Operations Research, 226, 397–416.

    Article  Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Ahmadi, A. (2016). A lot-sizing model with partial up-stream advanced payment and partial downstream delayed payment in a three-level supply chain. Annals of Operations Research, 238, 329–354.

    Article  Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Sasjadi, S. J. (2018). Ordering policies for non-instantaneous deteriorating items under hybrid partial prepayment, partial delay payment and partial backordering. The Journal of the Operational Research Society, 69, 1167–1196.

    Article  Google Scholar 

  • Liu, L., Zhao, L., & Ren, X. (2019). Optimal preservation technology investment and pricing policy for fresh food. Computers & Industrial Engineering, 135, 746–756.

    Article  Google Scholar 

  • Li, G., He, X., Zhou, J., & Wu, H. (2019). Pricing, replenishment, and preservation technology investment decisions for non-instantaneous deteriorating items. Omega, 84, 114–126.

    Article  Google Scholar 

  • Liao, J.-J., Srivastava, H. M., Chung, K.-J., Lee, S.-F., Huang, K.-N., & Lin, S.-D. (2021). Inventory models for non-instantaneous deteriorating items with expiration dates and imperfect quality under hybrid payment policy in the three-level supply chain. Symmetry, 13, 1–26.

    Article  Google Scholar 

  • Liao, J.-J., Huang, K.-N., Chung, K.-J., Lin, S.-D., Chuang, S.-T., & Srivastava, H. M. (2020). Optimal ordering policy in an economic order quantity (EOQ) model for non-instantaneous deteriorating items with defective quality and permissible delay in payments. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114, 1–26.

    Article  Google Scholar 

  • Liao, J.-J., Huang, K.-N., Chung, K.-J., Ting, P.-S., Lin, S.-D., & Srivastava, H. M. (2017). Lot-sizing policies for deterioration items under two-level trade credit with partial credit to credit-risk retailer and limited storage capacity. Mathematicsl Methods in the Applied Sciences, 40, 2122–2139.

    Article  Google Scholar 

  • Mahata, G. C., & De, S. K. (2017). Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers. Int. J. Manag. Sci. Eng. Manag., 12(1), 21–32.

    Google Scholar 

  • Mahata, G. C. (2017). Optimal ordering policy with trade credit and variable deterioration for fixed lifetime products. Int. J. Oper. Res., 25, 307–326.

    Article  Google Scholar 

  • Mishra, U., Cárdenas-Barrón, L. E., Tiwari, S., Shikh, A. A., & Treviño-Garza, G. (2017). An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment. Annals of Operations Research, 254, 165–190.

    Article  Google Scholar 

  • Mishra, U., Tijerina-Aguilera, J., Tiwari, S., & Cárdenas-Barrón, L. E. (2018). Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Mathematical Problems in Engineering, 2018, 1–14.

    Article  Google Scholar 

  • Mishra, U., Wu, J.-Z., Tsao, Y.-C., & Tseng, M.-L. (2020). Sustainable inventory system with controllable non-instantaneous deterioration and environmental emission rates. Journal of Cleaner Production, 244, 118807.

    Article  Google Scholar 

  • Mashud, A. H. M., Hasan, M. R., Wee, H. M., & Daryanto, Y. (2020). Non-instantaneous deteriorating inventory model under the joined effect of trade-credit, preservation technology and advertisement policy. Kybernetes, 49(6), 1645–1674.

    Article  Google Scholar 

  • Manna, A. K., Khan, M. A. A., Rahman, M. S., Shaikh, A. A., & Bhunia, A. K. (2022). Interval valued demand and prepayment-based inventory model for perishable items via parametric approach of interval and meta-heuristic algorithms. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2022.108343

    Article  Google Scholar 

  • Palanivel, M., & Uthayakumar, R. (2017). An EOQ model for non-instantaneous deteriorating items with partial backlogging and permissible delay in payments under inflation. International Journal of Industrial and Systems Engineering, 26, 63–89.

    Article  Google Scholar 

  • Pervin, M., Roy, S. K., & Weber, G. W. (2020). Deteriorating inventory with preservation technology under price and stock sensitive demand. American Institute of Mathematical Sciences, 16, 1582–1612.

    Google Scholar 

  • Raafat, F. (1991). Survey of literature on continuously deteriorating inventory model. The Journal of the Operational Research Society, 42, 27–37.

    Article  Google Scholar 

  • Sethi, V., & Shruti, S. (2006). Processing of fruits and vegetables for value addition. Indus Publishing.

    Google Scholar 

  • Shah, N. H., Chaudhari, U. B., & Jani, M. Y. (2016). Optimal policies for time-varying deteriorating item with preservation technology under selling price and trade credit dependent quadratic demand in a supply chain. International Journal of Applied and Computational Mathematics, 3, 363–379.

    Article  Google Scholar 

  • Shah, N. H., Chaudhari, U. B., & Jani, M. Y. (2017). Inventory model with expiration date of items and deterioration under two-level trade credit and preservation technology investment for time and price sensitive demand: DCF approach. International Journal of Logistics Systems and Management, 27, 420–437.

    Article  Google Scholar 

  • Sarkar, B., Saren, S., & Cárdenas-Barrón, L. E. (2016). An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Annals of Operations Research, 229(1), 677–702.

    Article  Google Scholar 

  • Singh, S., Khurana, D., & Tayal, S. (2016). An economic order quantity model for deteriorating products having stock dependent demand with trade credit period and preservation technology. Uncertain Supply Chain Manag., 4(1), 29–42.

    Article  Google Scholar 

  • Shah, N. H., Jani, M. Y., & Chaudhari, U. (2018). Optimal replenishment time for retailer under partial upstream prepayment and partial downstream overdue payment for quadratic demand. Mathematical and Computer Modelling of Dynamical Systems, 24(1), 1–11.

    Article  Google Scholar 

  • Shaikh, A. A., Khan, M. A. A., Panda, G. C., & Konstantaras, I. (2019). Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging. International Transactions in Operational Research, 26(4), 1365–1395.

    Article  Google Scholar 

  • Srivastava, H. M., Liao, J. J., Huang, K. N., Chung, K. J., Lin, S. D., & Lee, S. F. (2022). Supply chain inventory model for deteriorating products with maximum lifetime under trade-credit financing. Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics, 13, 53–71.

    Google Scholar 

  • Sultana, S., Mashud, A. H. M., Daryanto, Y., Miah, S., Alrasheedi, A., & Hezam, I. M. (2022). The role of the discount policy of prepayment on environmentally friendly inventory management. Fractal and Fractional, 6(1), 26.

    Article  Google Scholar 

  • Saren, S., Sarkar, B., & Bachar, R. K. (2020). Application of various price-discount policy for deteriorated products and delay in payments in an advanced inventory model. Inventions, 5, 50.

    Article  Google Scholar 

  • Tsao, Y. C. (2016). Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments. International Journal of Systems Science, 47(3), 572–585.

    Article  Google Scholar 

  • Teng, J.-T., Cárdenas-Barrón, L. E., Chang, H.-J., Wu, J., & Hu, Y. (2016). Inventory lot-size policies for deteriorating items with expiration dates and advance payments. Applied Mathematical Modelling, 40(19–20), 8605–8616.

    Article  Google Scholar 

  • Tavakkoli, S. H., & Taleizadeh, A. A. (2017). A lot sizing model for decaying item with full advance payment from the buyer and conditional discount from the supplier. Annals of Operations Research, 259, 415–436.

    Article  Google Scholar 

  • Taleizadeh, A. A. (2014a). An EOQ model with partial backordering and advance payment for an evaporating item. International Journal of Production Economics, 155, 185–193.

    Article  Google Scholar 

  • Taleizadeh, A. A. (2014b). An economic order quantity model for deteriorating item in a purchasing system with multiple prepayments. Applied Mathematical Modelling, 38(23), 5357–5366.

    Article  Google Scholar 

  • Taleizadeh, A. A. (2017). Lot sizing model with advance payment and disruption in supply under planned partial backordering. International Transactions in Operational Research, 24(4), 783–800.

    Article  Google Scholar 

  • Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018). Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. International Journal of Production Economics, 200, 16–36.

    Article  Google Scholar 

  • Udayakumar, R., & Geetha, K. V. (2018). An EOQ model for non-instantaneous deteriorating items with two levels of storage under trade credit policy. Journal of Industrial Engineering International, 14, 343–365.

    Article  Google Scholar 

  • Udayakumar, R., Geetha, K. V., & Sana, S. S. (2021). Economic ordering policy for non-instantaneous deteriorating items with price and advertisement dependent demand and permissible delay in payment under inflation. Mathematicsl Methods in the Applied Sciences, 44(9), 7697–7721.

    Article  Google Scholar 

  • Vandana, & Srivastava, H. M. (2017). An inventory model for ameliorating/deteriorating items with trapezoidal demand and complete backlogging under inflation and time discounting. Mathematicsl Methods in the Applied Sciences, 40, 2980–2993.

    Article  Google Scholar 

  • Wu, K.-S., Ouyang, L.-Y., & Yang, C.-T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging. International Journal of Production Economics, 101, 369–384.

    Article  Google Scholar 

  • Wu, J., Chang, C. T., Cheng, M. C., Teng, J. T., & Al-Khateeb, F. B. (2016a). Inventorymanagement for fresh produce when the time-varying demand depends on product freshness, stock level and expiration date. International Journal of Systems Science: Operations & Logistics, 3(3), 138–147.

    Google Scholar 

  • Wu, J., Al-Khateeb, F. B., Teng, J.-T., & Cárdenas-Barrón, L. E. (2016b). Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis. International Journal of Production Economics, 171, 105–115.

    Article  Google Scholar 

  • Wu, J., Teng, J. T., & Chan, Y. L. (2018a). Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes. International Journal of Systems Science: Operations & Logistics, 5(4), 310–326.

    Google Scholar 

  • Wu, J., Teng, J.-T., & Skouri, K. (2018b). Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits. Annals of Operations Research, 264(1), 459–476.

    Article  Google Scholar 

  • Yang, C.-T., Dye, C.-Y., & Ding, J.-F. (2015). Optimal dynamic trade credit and preservation technology allocation for a deteriorating inventory model. Computers & Industrial Engineering, 87, 356–369.

    Article  Google Scholar 

  • Zhang, Q., Tsao, Y.-C., & Chen, T.-H. (2014). Economic order quantity under advance payment. Applied Mathematical Modelling, 38, 5910–5921.

    Article  Google Scholar 

  • Zia, N. P. M., & Taleizadeh, A. A. (2015). A lot sizing model with backordering under hybrid linked to order multiple advance payments and delayed payment. Transportation Research Part E, 82, 19–37.

    Article  Google Scholar 

  • Zhang, J., Wei, Q., Zhang, Q., & Tang, W. (2016). Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints. Computers & Industrial Engineering, 95, 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the editor and reviewers for their contributions in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Jung Liao.

Ethics declarations

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Lemma 1

  1. (A)

    For a fixed \(\xi\), the first order derivative of \(G_{11} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)\) with respect to \(T\) is given by:

    \(\frac{{\partial G_{11} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)}}{\partial T} = \delta_{12} (\xi )m(\xi )T^{2} \left( {1 - m(\xi )} \right)\left( {2 - m(\xi )} \right)\left( {1 + \lambda - T + t_{d} (\xi )} \right)^{m(\xi ) - 3} > 0\) if \(T > 0\).

    So, \(G_{11} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)\) is increasing on \(T > 0\). Additionally,

    \(G_{11} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > G_{11} \left( {\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t_{d} (\xi )} \right) = t_{d}^{2} (\xi )m(\xi )\left( {1 - m(\xi )} \right)(1 + \lambda )^{ - 1} > 0\) if \(T > t_{d} (\xi )\).

    Furthermore, for any given \(\xi\), \(G_{11} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > 0\) if \(T \ge t_{d} (\xi )\).

  2. (B)

    The proof of Lemma 1(B) is similar to the proof of Lemma 1(A).

  3. (C)

    The first order derivative of \(G_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)\) for a fixed \(\xi\) with respect to \(T\) is given by:

    $$ \frac{{\partial G_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)}}{\partial T} = T^{2} \cdot F(\xi ,T) $$

    where

    $$ \begin{aligned} F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) &= \frac{{\delta_{12} (\xi )}}{2}t_{d}^{2} (\xi )m(\xi )\left[ {1 - m(\xi )} \right]\left[ {2 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 3} \\ &\quad + \frac{2}{2 - m(\xi )}\left[ {1 + m(\xi )} \right] + \left( {1 + \lambda } \right)^{2 - m(\xi )} t_{d} (\xi )m(\xi )\left[ {1 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 3} \\ &\quad + \frac{1}{3 - m(\xi )}\left( {1 + \lambda } \right)^{3 - m(\xi )} m(\xi )\left[ {1 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 3}\\ &\quad - \frac{6}{[2 - m(\xi )][3 - m(\xi )]} \\ \end{aligned} $$

Then, for a fixed \(\xi\), taking the first order derivative of \(F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)\) with respect to \(T\) is given by:

$$ \begin{aligned} \frac{{\partial F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)}}{\partial T} &= \frac{{\delta_{12} (\xi )}}{2}t_{d}^{2} (\xi )m(\xi )\left[ {1 - m(\xi )} \right]\left[ {2 - m(\xi )} \right]\left[ {3 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 4} \\ &\quad + \left( {1 + \lambda } \right)^{2 - m(\xi )} t_{d} (\xi )m(\xi )\left[ {1 - m(\xi )} \right]\left[ {(3 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 4} \\ &\quad + \left( {1 + \lambda } \right)^{3 - m(\xi )} m(\xi )\left[ {1 - m(\xi )} \right]\left[ {1 + \lambda - T + t_{d} (\xi )} \right]^{m(\xi ) - 4} \\ & > 0 \\ \end{aligned} $$

So, we have \(F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T)\) is increasing on \(T > 0\). Additionally,

$$ \begin{gathered} F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > F(\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t_{d} (\xi )) = \frac{m(\xi )}{{2\left( {1 + \lambda } \right)^{2} }}\left[ {1 - m(\xi )} \right]\left[ {2 - m(\xi )} \right]t_{d}^{2} (\xi ) + m(\xi ) + \frac{m(\xi )}{{1 + \lambda }}\left[ {1 - m(\xi )} \right]t_{d} (\xi ) \\ > 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T \ge t_{d} (\xi ) \\ \end{gathered} $$

The above arguments imply that for any given \(\xi\), \(G^{\prime}_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > 0\) if \(T \ge t_{d} (\xi )\), so we have \(G_{31} (T)\) is increasing on \(T \ge t_{d} (\xi )\). Moreover,

\(G_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > G_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t_{d} (\xi )) = \frac{m(\xi )}{{2(1 + \lambda )}}\left( {1 - m(\xi )} \right)t_{d}^{4} (\xi ) + \frac{m(\xi )}{3}t_{d}^{3} (\xi ) > 0\) if \(T > t_{d} (\xi )\).

Furthermore, for any given \(\xi\), \(G_{31} (\xi {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} T) > 0\) if \(T \ge t_{d} (\xi )\).

Incorporating the above argument, we have completed the proof of Lemma 1.□

Appendix B

Proof of Lemma 2

  1. (A)

    For any given \(\xi\), by the concavity of \(Z_{1} (\xi ,T)\), if \(\Omega_{1} \le 0\) and \(\Omega_{0} \le 0\) which imply \(Z^{\prime}_{1} (T|\xi ) \le 0\) on \(T \in {[}T_{u} (\xi ),\lambda ]\), we have \(Z_{1} (\xi ,T)\) is decreasing on \({[}T_{u} (\xi ),\lambda ]\).

  2. (B)

    For any given \(\xi\), by the concavity of \(Z_{1} (\xi ,T)\), if \(\Omega_{1} { > }0\) and \(\Omega_{0} \le 0\) which imply there exists a unique value of \(T\) such that \(\frac{{\partial Z_{1} (T|\xi )}}{\partial T}\left| {_{{T = T_{1}^{*} }} } \right. = 0\). Furthermore, we have \({\text{Z}}_{1} (\xi ,T)\) is increasing on \({[}T_{u} (\xi ),T_{1}^{*} ]\) and decreasing on \({[}T_{1}^{*} ,\lambda ]\).

  3. (C)

    For any given \(\xi\), by the concavity of \(Z_{1} (\xi ,T)\), if \(\Omega_{1} { > }0\) and \(\Omega_{0} > 0\) which imply \(Z^{\prime}_{1} (T|\xi ) > 0\) on \(T \in {[}T_{u} (\xi ),\lambda ]\), we have \(Z_{1} (\xi ,T)\) is increasing on \({[}T_{u} (\xi ),\lambda ]\).

  4. (D)

    For any given \(\xi\), by the concavity of \(Z_{2} (\xi ,T)\), if \(\Omega_{2} \le 0\) and \(\Omega_{3} \le 0\) which imply \(Z^{\prime}_{2} (T|\xi ) \le 0\) on \(T \in {[}t_{d} (\xi ),T_{u} (\xi )]\), we have \(Z_{2} (\xi ,T)\) is decreasing on \({[}t_{d} {(}\xi {), }T_{u} (\xi )]\).

  5. (E)

    For any given \(\xi\), by the concavity of \(Z_{2} (\xi ,T)\), if \(\Omega_{2} \le 0\) and \(\Omega_{3} { > }0\) which imply there exists a unique value of \(T\) such that \(\frac{{\partial Z_{2} (T|\xi )}}{\partial T}\left| {_{{T = T_{2}^{*} }} } \right. = 0\). Furthermore, \(Z_{2} (\xi ,T)\) is increasing on \(\left[ {t_{d} (\xi ),T_{2}^{*} } \right]\) and decreasing on \(\left[ {T_{2}^{*} ,T_{u} (\xi )} \right]\).

  6. (F)

    For any given \(\xi\), by the concavity of \(Z_{2} (\xi ,T)\), if \(\Omega_{2} { > }0\) and \(\Omega_{3} { > }0\) which imply \(Z^{\prime}_{2} (T|\xi ) > 0\) on \(T \in \left[ {t_{d} (\xi ),T_{u} (\xi )} \right]\), we have \(Z_{2} (\xi ,T)\) is increasing on \({[}t_{d} {(}\xi {), }T_{u} (\xi )]\).

Incorporating the above argument, we have completed the proof of Lemma 2.□

Appendix C

Proof of Lemma 3

  1. (A)

    For any given \(T\), if \(\Omega_{11} \le 0\) which implies \(\frac{{\partial Z_{1} (\xi |T)}}{\partial \xi } \le 0\) on \(\xi_{1} \in \left[ {\xi_{u} ,t_{d}^{ - 1} (T)} \right]\) because of \(\frac{{\partial Z_{1}^{2} (\xi {|}T)}}{{\partial \xi^{2} }} \le 0\), we have \(Z_{1} (\xi |T)\) is decreasing on \(\left[ {\xi_{u} ,t_{d}^{ - 1} (T)} \right]\) and \(\xi_{1}^{*} { = }\xi_{u}\).

  2. (B)

    For any given \(T\), if \(\Omega_{12} > 0\) which implies \(\frac{{\partial Z_{1} (\xi |T)}}{\partial \xi } > 0\) on \(\xi_{1} \in \left[ {\xi_{u} ,t_{d}^{ - 1} (T)} \right]\) because of \(\frac{{\partial Z_{1}^{2} (\xi {|}T)}}{{\partial \xi^{2} }} \le 0\), we have \(Z_{1} (\xi |T)\) is increasing on \(\left[ {\xi_{u} ,t_{d}^{ - 1} (T)} \right]\) and \(\xi_{1}^{*} {\text{ = t}}_{d}^{ - 1} (T)\).

  3. (G)

    For any given \(T\), if \(\Omega_{11} > 0\) and \(\Omega_{12} \le 0\) which implies there exists a unique value of \(\xi\) such that \(\frac{{\partial Z_{1} (\xi |T)}}{\partial \xi }\left| {_{{\xi = \xi_{1}^{*} }} } \right. = 0\). Furthermore, \(Z_{1} (\xi |T)\) is increasing on \({[}\xi_{u} ,\xi^{*} ]\) and decreasing on \({[}\xi^{*} ,t_{d}^{ - 1} (T)]\), then we have \(\xi^{*} { = }\xi_{1}^{*}\).

Incorporating the above argument, we have completed the proof of Lemma 3.□

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, JJ., Srivastava, H.M. & Lin, SD. Inventory models for non-instantaneous deteriorating items with expiration dates under the joined effect of preservation technology and linearly time-dependent holding cost when order-size linked to advance payment. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-05909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-05909-6

Keywords

Navigation