Skip to main content
Log in

Magnesium fluoride and black phosphorus mediated long-range surface plasmon resonance biosensor for enhanced sensing of SARS-CoV-2 virus

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the scientific community, the detection of the SARS-CoV-2 virus is a major concern. Numerous sensors based on chemical and electrochemical techniques have been developed for detection of viruses. The developed sensor still faces the difficulty of achieving real-time analysis, early virus identification, and high performance. The present study aims to propose an analytical investigation for the development of a long-range surface plasmon resonance (LRSPR) sensor, with the objective of addressing the issues. In this detailed study Magnesium fluoride and Black Phosphorus layers have been used including sandwiched metal layer to achieve the targeted sensitivity. Theoretically, SARS-CoV-2 virus has been detected with high level of imaging sensitivity of 19.584 × 103 /RIU, and a figure of merit (FoM) of 672 RIU−1. Based on the achieved sensitivity, copper metal layer has been proved to be most appropriate layer of Kretschmann configuration. Kretschmann configuration is used in this study due to its possibility of physical realization. To complete the study, thicknesses of all layers have also been optimized to achieve high sensitivity using MATLAB simulations. The performance of the proposed sensor is also compared with the existing work and found most appropriate for the said application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data set generated is already presented in manuscript.

References

  1. W. Hickel, W. Knoll, Thin Solid Films 187, 349 (1990)

    Article  ADS  Google Scholar 

  2. Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, F.J. Bartoli, Lab Chip 13, 4755 (2013)

    Article  Google Scholar 

  3. A. Barik, L.M. Otto, D. Yoo, J. Jose, T.W. Johnson, S.H. Oh, Nano Lett. 14, 2006 (2014)

    Article  ADS  Google Scholar 

  4. B. Zeng, Y. Gao, F.J. Bartoli, Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015(16) (2015)

  5. B. Zeng, Y. Gao, F.J. Bartoli, Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015(1), 166–170 (2015)

    Google Scholar 

  6. M.K. Singh, N. Pal, S. Pal, Y.K. Prajapati, J.P. Saini, Toxic Gas Sens. Biosens. Mater. Res. Found. 92, 69 (2021)

    Article  Google Scholar 

  7. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B Chem. 54, 3 (1999)

    Article  Google Scholar 

  8. V.S. Chaudhary, D. Kumar, S. Kumar, IEEE Trans. Plasma Sci. 49, 3803 (2021)

    Article  ADS  Google Scholar 

  9. P.K. Maharana, P. Padhy, R. Jha, IEEE Photonics Technol. Lett. 25, 2156 (2013)

    Article  ADS  Google Scholar 

  10. C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982)

    Article  Google Scholar 

  11. S. Pandey, S. Singh, P. Lohia, R.K. Yadav, D.K. Dwivedi, J. Opt. 53, 304–314 (2024)

    Article  Google Scholar 

  12. R. Kumar, S. Pal, Y.K. Prajapati, S. Kumar, J.P. Saini, IEEE Sens. J. 22, 6536 (2022)

    Article  ADS  Google Scholar 

  13. N.H. Kamaruddin, A.A.A. Bakar, M.H. Yaacob, M.A. Mahdi, M.S.D. Zan, S. Shaari, Appl. Surf. Sci. 361, 177 (2016)

    Article  ADS  Google Scholar 

  14. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan, IEEE Photonics J. 8, 1 (2016)

    Google Scholar 

  15. P.D. Howes, R. Chandrawati, M.M. Stevens, Science. 346, 1247390 (2014)

    Article  Google Scholar 

  16. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981)

    Article  ADS  Google Scholar 

  17. K. Matsubara, S. Kawata, S. Minami, Opt. Lett. 15, 75 (1990)

    Article  ADS  Google Scholar 

  18. R. Kumar, S. Pal, N. Pal, A. Verma, J.P. Saini, Y.K. Prajapati, Opt. Quantum Electron. 53, 218 (2021)

    Article  Google Scholar 

  19. M.K. Singh, S. Pal, Y.K. Prajapati, J.P. Saini, IEEE Sens. Lett. 4, 1–4 (2020)

    Google Scholar 

  20. J. Liao, Y. Zhan, Q. Liu, R. Hong, C. Tao, Q. Wang, H. Lin, Z. Han, D. Zhang, Appl. Surf. Sci. 540, 148397 (2021)

    Article  Google Scholar 

  21. S. Szunerits, N. Maalouli, E. Wijaya, J.P. Vilcot, R. Boukherroub, Anal. Bioanal. Chem. 405, 1435 (2013)

    Article  Google Scholar 

  22. N. Pal, J.B. Maurya, Y.K. Prajapati, Plasmonics 17, 1571 (2022)

    Article  Google Scholar 

  23. X. Gan, H. Zhao, X. Quan, Biosens. Bioelectron. 89, 56 (2017)

    Article  Google Scholar 

  24. S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.T. Jung, Adv. Mater. 28, 7020 (2016)

    Article  Google Scholar 

  25. P.S. Pandey, S.K. Raghuwanshi, IEEE Access 10, 116152 (2022)

    Article  Google Scholar 

  26. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan, IEEE Photonics J. 8, 1–9 (2016)

    Google Scholar 

  27. S. Chen, C. Lin, Opt. Commun. 435, 102 (2019)

    Article  ADS  Google Scholar 

  28. A. Bijalwan, V. Rastogi, Appl. Opt. 57, 9230 (2018)

    Article  ADS  Google Scholar 

  29. Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, Z.-Y. Chen, Sensors 17, 1846 (2017)

    Article  ADS  Google Scholar 

  30. C.E. Jordan, K.G. Balmain, Electromagnetic waves and radiating systems (1968) (Prentice Hall, Iberia, SRL, 2009)

    Google Scholar 

  31. D.J. Griffiths, Pearson, ISBN- 13: 978-0-321-85656-2 (2021)

  32. S. Pal, A. Verma, S. Raikwar, Y.K. Prajapati, J.P. Saini, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Article  Google Scholar 

  33. Y. Zheng, S. Bian, J. Sun, L. Wen, G. Rong, M. Sawan, Biosensors 12, 151 (2022)

    Article  Google Scholar 

  34. J. Han, S.L. Lee, J. Kim, G. Seo, Y.W. Lee, Microchim. Acta 189, 321 (2022)

    Article  Google Scholar 

  35. B.A. Taha, Y. Al Mashhadany, M.H.H. Mokhtar, M.S.D. Bin Zan, N. Arsad, Sensors (Switzerland) 20(23), 1–29 (2020)

    Article  Google Scholar 

  36. S.A. Taya, M.G. Daher, A.H.M. Almawgani, A.T. Hindi, S.H. Zyoud, I. Colak, Plasmonics 18(4), 1441–1448 (2023)

    Article  Google Scholar 

  37. R. Zakaria, N.A.M. Zainuddin, M.A.S.A. Fahri, A. Kamkar, A. Al Zahrani, S.K. Patel, K. Ahmed, Opt. Quantum Electron. (2021). https://doi.org/10.21203/rs.3.rs-684898/v1

    Article  Google Scholar 

  38. K. Ahmed, M.A. Alzain, H. Abdullah, Y. Luo, D. Vigneswaran, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, Biosensors 11, 104 (2021)

    Article  Google Scholar 

  39. N. Basak, N. Sultana, S.A. Mitu, R. Vinod Kumar, F.A. Al-Zahrani, S.K. Patel, K. Ahmed, Plasmonics 18, 271 (2023)

    Article  Google Scholar 

  40. R. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati, Appl. Phys. A Mater. Sci. Process. 127, 259 (2021)

    Article  ADS  Google Scholar 

  41. P.K. Maharana, T. Srivastava, R. Jha, IEEE Photonics Technol. Lett. 25, 122 (2013)

    Article  ADS  Google Scholar 

  42. H. Xu, L. Wu, X. Dai, Y. Gao, Y. Xiang, J. Appl. Phys. 120, 053101 (2016)

    Article  ADS  Google Scholar 

  43. Y. Xu, L. Wu, L.K. Ang, IEEE, J. Sel. Top. Quantum Electron. 25, 1 (2018)

    Google Scholar 

  44. V.K. Verma, R. Kumar, S. Pal, Y.K. Prajapati, Opt. Mater. (Amst). 133, 112977 (2022)

    Article  Google Scholar 

  45. N. Pal, J.B. Maurya, Y.K. Prajapati, S. Kumar, Optik (Stuttg). 274, 170556 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Project No. CRG/2023/004028 funded by Science and Engineering Research Board (SERB).

Author information

Authors and Affiliations

Authors

Contributions

Sajal Agarwal: Writing—original draft, Formal analysis; Rajeev Kumar: Simulation, design, modeling, analysis. Sarika Pal: Conceptualization, Formal analysis, design, modeling, analysis; Yogendra Kumar Prajapati: Conceptualization, Supervision, design; J.P. Saini: Conceptualization, Formal analysis, Supervision.

Corresponding author

Correspondence to Sarika Pal.

Ethics declarations

Conflict of interest

Authors declare no competing interset.

Ethical approval

Ethical Approval is not required as data presented here is based on numerical study.

Consent to publish

All Authors of this paper agree to publish our theoretical research.

Consent to participate

No consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Kumar, R., Pal, S. et al. Magnesium fluoride and black phosphorus mediated long-range surface plasmon resonance biosensor for enhanced sensing of SARS-CoV-2 virus. J Opt (2024). https://doi.org/10.1007/s12596-024-01772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01772-7

Keywords

Navigation