Skip to main content
Log in

Optical solitons perturbation for the concatenation system with power law nonlinearity

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The concatenation system is a classical model which has been wildly applied in nonlinear science. By using the second-order and triple-order polynomial complete discriminant system technique, a range of new optical soliton solutions of the concatenation system with power law nonlinearity are derived, which include singular solitons, bright solitons, dark solitons, anti-kink solitary-wave solutions, chirped bright soliton-like solution, Jacobian elliptic function solutions, implicit analytical solutions and solitary wave solutions. Moreover, numerical simulations are also presented to visualize the mechanism of the concatenation system by selecting some suitable parameters. Finally, two-dimension and three-dimension diagrams are drawn, which may help researcher to understand mechanisms of dynamical behaviors and complex physical phenomena of the optical soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev, Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)

    Article  ADS  Google Scholar 

  2. A.M. Wazwaz, M. Mehanna, Higher-order Sasa–Satsuma equation: bright and dark optical solitons. Optik 243, 167421 (2021)

    Article  ADS  Google Scholar 

  3. L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with \(\beta \)-derivative in optical fibers. Opt. Quantum Electron. 56, 175 (2024)

    Article  Google Scholar 

  4. A. Ankiewicz, N. Akhmediev, Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Triki, Y. Sun, Q. Zhou, A. Biswas, Y. Yildirim, H.M. Alshehri, Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Solitons Fractals 164, 112622 (2022)

    Article  MathSciNet  Google Scholar 

  6. L. Tang, Bifurcations and disperive optical solitons for the cubic-quartic nonlinear Lakshmanan–Porsezian–Daniel equation in polarization-preserving fibers. Optik 270, 170000 (2022)

    Article  ADS  Google Scholar 

  7. L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger–Hirota equation. Chaos Solitons Fractals 161, 112383 (2022)

    Article  Google Scholar 

  8. T.L. Belyaeva, V.N. Serkin, Wave-particle duality of solitons and solitonic analog of the Ramsauer–Townsend effect. Eur. Phys. J. D 66, 1–9 (2012)

    Article  Google Scholar 

  9. M.Y. Wang, Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic-quintic-septic nonlinearity. Result Phys. 33, 105077 (2022)

    Article  Google Scholar 

  10. Y. Yildirim, Optical solitons with Biswas–Arshed equation by F-expansion method. Optik 227, 165788 (2021)

    Article  ADS  Google Scholar 

  11. L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger–Hirota equation in DWDM networks. Optik 262, 169276 (2022)

    Article  ADS  Google Scholar 

  12. Q. Zhou, Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 39, 010501 (2022)

    Article  ADS  Google Scholar 

  13. W.B. Rabie, H.M. Ahmed, Construction of new solitons and other wave solutions for a concatenation model using modified extended tanh-function method. Alex. Eng. J. 74, 445–451 (2023)

    Article  Google Scholar 

  14. Y. Alhojilan, H.M. Ahmed, Stochastic solitons in birefringent fibers for Biswas–Arshed equation with multiplicative white noise via Itö calculus by modified extended mapping method. Symmetry 15, 15010270 (2022)

    Google Scholar 

  15. Y. Alhojilan, H.M. Ahmed, Novel analytical solutions of stochastic Ginzburg–Landau equation driven by Wiener process via the improved modified extended tanh function method. Alex. Eng. J. 72, 269–274 (2023)

    Article  Google Scholar 

  16. W.B. Rabie, H.M. Ahmed, Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov’s law by improved modified extended tanh-function method. Optik 245, 167665 (2021)

    Article  ADS  Google Scholar 

  17. A.R. Seadawy, H.M. Ahmed, A. Biswas, An alternate pathway to solitons in magneto-optic waveguides with triple-power law nonlinearity. Optik 231, 166480 (2021)

    Article  ADS  Google Scholar 

  18. W.B. Rabie, H.M. Ahmed, Optical solitons for multiple-core couplers with polynomial law of nonlinearity using the modified extended direct algebraic method. Optik 258, 168848 (2022)

    Article  ADS  Google Scholar 

  19. W.B. Rabie, H.M. Ahmed, Cubic-quartic solitons perturbation with couplers in optical metamaterials having triple-power law nonlinearity using extended F-expansion method. Optik 262, 169225 (2022)

    Article  ADS  Google Scholar 

  20. W.B. Rabie, H.M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov’s sextic power law using extended F-expansion method. Chaos Solitons Fractals 160, 112289 (2022)

    Article  MathSciNet  Google Scholar 

  21. E.M. Zayed, R.M. Shohib, A. Biswas et al., Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukrainian J. Phys. Opt. 22, 38–49 (2021)

    Article  ADS  Google Scholar 

  22. A.R. Adem, B.P. Ntsime, A. Biswas et al., Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukrainian J. Phys. Opt. 22, 83–86 (2021)

    Article  ADS  Google Scholar 

  23. A. Biswas, J. Edoki, P. Guggilla et al., Cubic-quartic optical solitons in Lakshmanan–Porsezian–Daniel model derived with semi-inverse variational principle. Ukrainian J. Phys. Opt. 22, 123–127 (2021)

    Article  ADS  Google Scholar 

  24. Y. Yildirim, A. Biswas et al., Optical solitons in fibre Bragg gratings with third- and fourth-order dispersive reflectivities. Ukrainian J. Phys. Opt. 22, 239–254 (2021)

    Article  ADS  Google Scholar 

  25. Y. Yildirim, A. Biswas et al., Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-Gordon equation approach. Ukrainian J. Phys. Opt. 22, 255–259 (2021)

    Article  ADS  Google Scholar 

  26. E.M. Zayed, R.M. Shohib, A. Biswas et al., Optical solitons in the Sasa–Satsuma model with multiplicative noise via Ito calculus. Ukrainian J. Phys. Opt. 23, 9–14 (2022)

    Article  Google Scholar 

  27. A.A. Qarni, A.S. Mohammed, A. Biswas et al., Dark and singular cubic-quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 24, 46–61 (2023)

    Article  ADS  Google Scholar 

  28. E. Zayed, M. Alngar, A. Biswas, Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic-nonlocal nonlinearity. Ukrainian J. Phys. Opt. 27, 01033 (2024)

    Article  Google Scholar 

  29. A. Biswas, J.V. Guzman, Y. Yildirim, Optical solitons for the dispersive concatenation model: undetermined coefficients. Contemp. Math. 4, 951–961 (2023)

    Article  Google Scholar 

  30. E. Zayed, K. Gepreel, A. Biswas, Optical solitons for the dispersive concatenation model. Contemp. Math. 4, 971–978 (2023)

    Google Scholar 

  31. L. Tang, A. Biswas, Y. Yildirim, Bifurcation analysis and chaotic behavior of the concatenation model with power-law nonlinearity. Contemp. Math. 4, 981–985 (2023)

    Google Scholar 

  32. A. Arnous, A. Biswas, Y. Yildirim, Quiescent optical solitons for the concatenation model having nonlinear chromatic dispersion with differential group delay. Contemp. Math. 4, 991–998 (2023)

    Google Scholar 

  33. O.G. Gaxiola, A. Biswas, Y. Yildirim, A.S. Alshomrani, Bright optical solitons for the concatenation model with power-law nonlinearity: Laplace–Adomian decomposition. Contemp. Math. 4, 1011–1018 (2023)

    Google Scholar 

  34. A. Javid, N. Raza, M.S. Osman, Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71, 362 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. N. Raza, U. Afzal, H. Rezazadeh, Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quantum Electron. 51, 107 (2019)

    Article  Google Scholar 

  36. N. Raza, A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation. Waves Random Complex Media 29, 75 (2019)

    Article  Google Scholar 

  37. U. Afzal, N. Raza, I.G. Murtaza, On soliton solutions of time fractional form of Sawada–Kotera equation. Opt. Quantum Electron. 59, 391–405 (2019)

    Google Scholar 

  38. N. Raza, I.G. Murtaza, M. Younis, On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28, 165 (2018)

    Article  MathSciNet  Google Scholar 

  39. I.G. Murtaza, S. Arshed, N. Raza, New and more solitary wave patterns of the Heisenberg ferromagnetic spin chain model in fiber optics. Int. J. Mod. Phys. B 78, 173 (2019)

    Google Scholar 

  40. L. Tang, Bifurcations and traveling wave solitons in optical fibers with the nonlinear Kaup–Newell system. Optik 279, 170749 (2023)

    Article  ADS  Google Scholar 

  41. L. Tang, A. Biswas, Y. Yildirim, A.A. Alghamdi, Bifurcation analysis and optical solitons for the concatenation model. Phys. Lett. A 480, 128943 (2023)

    Article  MathSciNet  Google Scholar 

  42. M.Y. Wang, A. Biswas, Y. Yildirim, Optical solitons for the dispersive concatenation model with power-law nonlinearity by the complete discriminant approach. Contemp. Math. 12, 33814 (2023)

    Google Scholar 

  43. M.Y. Wang, A. Biswas, Y. Yildirim, Optical solitons for dispersive concatenation model with Kerr law nonlinearity by the complete discriminant method. J. Opt. 57, 75–81 (2023)

    Google Scholar 

  44. N. Kudryashov, A.A. Kutukov, A. Biswas, Optical solitons for the concatenation model: power-law nonlinearity. Chaos Solitons Fractals 177, 114212 (2023)

    Article  MathSciNet  Google Scholar 

  45. A.R. Adem, A. Biswas, A. Siri, Y. Yildirim, Implicit quiescent optical solitons for the concatenation model with Kerr law nonlinearity and nonlinear chromatic dispersion by Lie symmetry. J. Opt. 58, 1011–1017 (2023)

    Google Scholar 

Download references

Funding

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under grant No.20115134110001.

Author information

Authors and Affiliations

Authors

Contributions

Lu Tang: Writing-original draft, Conceptualization, Methodology, Writing-review & editing.

Corresponding author

Correspondence to Lu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L. Optical solitons perturbation for the concatenation system with power law nonlinearity. J Opt (2024). https://doi.org/10.1007/s12596-024-01757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01757-6

Keywords

Navigation