Skip to main content
Log in

Novel characteristics of CQDs synthesized by electrochemical method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this research, carbon quantum dots were obtained using an electrochemical method. The structural, electrical, and optical properties of the carbon quantum dots samples were studied. The synthetic results showed that the particle size of the CQDs using X-rays was about 2 nm, while the results of scanning electron microscope showed that the particle size was 20 nm. The X-ray results also showed that the material formed was highly crystalline and in one direction. Fourier transition infrared examination revealed the presence of strong carbon–carbon bonds at 1577 cm−1. While the results of the electrical properties showed that the free carrier concentration was 1.295 × 1012 cm−2 of quantum dots and have p type. The results of the optical properties represented by absorption and fluorescence spectra confirmed the formation of nanoparticles through the results of the energy gap (3.6 eV) and the formation of surface states. The thickness of the prepared films was 900 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were created or analyzed during the current study.

References

  1. Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014)

    Article  Google Scholar 

  2. K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, Y.P. Sun, Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7(16), 8363–8376 (2015)

    Article  Google Scholar 

  3. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004)

    Article  Google Scholar 

  4. W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)

    Article  Google Scholar 

  5. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134(1), 15–18 (2012)

    Article  Google Scholar 

  6. S.S. Mahmood, F.H. Hussien, A.J. Atiyah, Carbon nanotubes: synthesis via flame fragment deposition (FFD) method from liquefied petroleum gas. Baghdad Sci. J. 20(2), 451–459 (2023)

    Article  Google Scholar 

  7. Z.A. Ramadhan, A. Hashim, M. Ali, A. Jewad, Synthesis and study the electrical properties of carbon nanotubes-polyvinylchloride composites. Iraqi J. Phys. 10(18), 147–150 (2012)

    Google Scholar 

  8. Y.Y. Mahled, K.A. Saleh, Removing of methylene blue dyefrom its aqueous solutionsusing polyacrylonitrile/iron oxide/graphene oxide. Iraqi J. Sci. 63(6), 2320–2330 (2022)

    Google Scholar 

  9. M.W. Kazem, R.K. Jamal, Characterization of copper phthalocyanine-tetrasulfonic acid tetrasodium salt/graphene oxide. Iraqi J. Sci. 62(6), 1893–1900 (2021)

    Article  Google Scholar 

  10. W.K. Mahmood, R.K. Ibrahim, A.N. Naje, Surface plasmon resonance study of Ag nanoparticles colloidal. Iraqi J. Sci. 58(4B), 2090–2097 (2017)

    Google Scholar 

  11. M.H. Raheema, Coating of carbon nanotubes using chemical method to enhance the corrosion protection of copper and aluminum metals in seawater medium. Iraqi J. Sci. 64(5), 2117–2128 (2023)

    Article  Google Scholar 

  12. A. Addie, K.S. Khashaan, J. Saimon, A. Hassan, Impact of laser energy on features of carbon nanostructure materials prepared by a one-step pulsed laser ablation in water. Iraqi J. Sci. 62(7), 2197–2203 (2021)

    Article  Google Scholar 

  13. A.D. Sinelnik, Ultra-broadband photoluminescent carbon dots synthesized by laser-induced thermal shock. Laser Photon. Rev. 17, 2200295 (2023)

    Article  ADS  Google Scholar 

  14. V. Rimal, S. Shishodia, P.K. Srivastava, Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Appl. Nanosci. 10(2), 455–464 (2020)

    Article  ADS  Google Scholar 

  15. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015)

    Article  Google Scholar 

  16. H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21(23), 5563–5565 (2009)

    Article  Google Scholar 

  17. C. Phadke, A. Mewada, R. Dharmatti, M. Thakur, S. Pandey, M. Sharon, Biogenic synthesis of fluorescent carbon dots at ambient temperature using Azadirachta indica (Neem) gum. J. Fluoresc. 25(4), 1103–1107 (2015)

    Article  Google Scholar 

  18. G. Oza, K. Oza, S. Pandey, S. Shinde, A. Mewada, M. Thakur, M. Sharon, M. Sharon, A green route towards highly photoluminescent and cytocompatible carbon dot synthesis and its separation using sucrose density gradient centrifugation. J. Fluoresc. 25(1), 9–14 (2014)

    Article  Google Scholar 

  19. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, M. Sharon, Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater. Sci. Eng. C 33(5), 2914–2917 (2013)

    Article  Google Scholar 

  20. M., Thakur, S. Pandey, A. Mewada, V. Patil, M. Khade, E. Goshi, M. Sharon, Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release bioimaging, and enhanced antimicrobial activity. J. Drug Deliv. 282193

  21. M. Thakur, A. Mewada, S. Pandey, M. Bhori, K. Singh, M. Sharon, M. Sharon, Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater. Sci. Eng. C 67, 468–477 (2016)

    Article  Google Scholar 

  22. Lana Ali Essa and Raied K. Jamal, Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method. J. Opt. (2023)

  23. A.H. Abd, O.A. Ibrahim, Synthesis of carbon quantum dot by electro-chemical method and studying optical. Electr. Struct. Prop. Chem. Methodol. 6(11), 825–830 (2022)

    Google Scholar 

  24. J. Kim, S.H. Lee, F. Tieves, D.S. Choi, F. Hollmann, C.E. Paul, C.B. Park, Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angewandte Chemie Int. Ed. 57(42), 13825–13828 (2018)

    Article  Google Scholar 

  25. M. W. Kadhim, Raied K. Jamal, Fabrication of a novel solar cell using copper phthalocyanine tetrasulfonic acid tetrasodium salt/graphene oxide. J. Opt. (2023)

  26. H. I. Murad, M. A. Mohammed, A. B. Taha, Raied K, Bolometric properties of uncooled semiconductor carbon nanotubes. J. Opt. (2023)

  27. L.A. Abdullah, Nonlinear optical properties of liquid crystal doped with different concentrations of carbon nanotubes. AIP Conf. Proc. 2123, 020064 (2019)

    Article  Google Scholar 

  28. E. Parya, J.-W. Rhim, Pectin/carbon quantum dots fluorescent film with the ultraviolet blocking property through light conversion. Colloids Surf. B Biointerfaces 219, 112804 (2022)

    Article  Google Scholar 

  29. C. Mingjun, Y. Cao, Y. Zhu, W. Peng, Y. Li, F. Zhang, Q. Xia, X. Fan, Oxidation-modulated CQDs derived from covalent organic frameworks as enhanced fluorescence sensors for the detection of chromium (VI) and ascorbic acid. Ind. Eng. Chem. Res. 31, 11484–11493 (2022)

    Google Scholar 

  30. G. Murali, B. Kwon, H. Kang, J.K.R. Modigunta, S. Park, S. Lee, H. Lee, Y.H. Park, J. Kim, S.Y. Park, Hematoporphyrin photosensitizer-linked carbon quantum dots for photodynamic therapy of cancer cells. ACS Appl. Nano Mater. 5, 4376–4385 (2022)

    Article  Google Scholar 

  31. T.K. Mandal, N. Parvin, Rapid detection of bacteria by carbon quantum dots. J. Biomed. Nanotechnol. 7(6), 846–848 (2011)

    Article  Google Scholar 

  32. J. G. Smith, Organic chemistry, 7th edition, The McGraw-Hill Companies, (2024)

  33. J. Coates, Interpretation 13re of infrared spectra, a practical approach, Infrared Spectroscopy, (2006)

  34. Y.A. Mahmood, B.T. Chiad, Synthesis and spectroscopic study of highly fluorescent carbon dots derived from orange juice with stilbene 420 dye. Iraqi J. Phys. 18(44), 62–68 (2020)

    Article  Google Scholar 

  35. N. L. Hussein, K. S. Khashan, H. M. Rasheed, H. Y. Hammoud, R. M. S. ALHaddad, Simulation of optical energy gap for synthesis carbon quantum dot by laser ablation. Iraqi J. Sci. 52–56 (2019)

  36. A. B. D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material, Indonesian J. Sci. Technol. 4(1), (2019)

  37. A. Kolanowska, G. Dzido, M. Krzywiecki, M.M. Tomczyk, D. Łukowiec, S. Ruczka, S. Boncel, Carbon quantum dots from amino acids revisited: survey of renewable precursors toward high quan-tum-yield blue and green fluorescence. ACS Omega 45, 41165–41176 (2022)

    Article  Google Scholar 

  38. C. Kittel, Introduction to Solid State Physics, 8th edition, Wiley. (2005)

  39. P. Surendran, A. Lakshmanan, S. Sakthy Priya, K. Balakrishnan, P. Rameshkumar, P. Karthik Kannan, TejaswiAshokHegde. Geetha, G. Vinitha, Bioinspired fluorescence carbon quantum dots extracted from natural honey: efficient material for photonic and antibacterial applications. Nano-Struct. Nano-Obj. 24, 100589 (2020)

    Article  Google Scholar 

  40. A.M. Suhail, M.J. Khalifa, N.M. Saeed, O.A. Ibrahim, White light generation from CdS nanoparticles illuminated by UV-LED. Eur. Phys. J. Appl. Phys. 49(3), 30601 (2010)

    Article  Google Scholar 

  41. Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. 34, (2014)

  42. S. Y. Lim , W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 1, (2015)

  43. Z. Zhang, T. Zheng, X. Li, J. Xu, H. Zeng, Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 33(8), 457–472 (2016)

    Article  Google Scholar 

  44. R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A, 8, (2017)

  45. R.R. Alani, O.A. Ibrahim, Effect of point defects on the structural and optical properties of CdS nanoparticles synthesized by chemical method. Int. J. Mech. Eng. 7(1), 5156–5165 (2022)

    Google Scholar 

  46. M. Sun, X. Ma, X. Chen, Y. Sun, X. Cui, Y. Lin, A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties. RSC Adv. 4(3), 1121–1126 (2014)

    Article  ADS  Google Scholar 

  47. L.E. Brus, Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403 (1984)

    Article  ADS  Google Scholar 

  48. J. Guild, The colorimetric properties of the spectrum. Phil. Trans. R. Soc. A 230, 681–693 (1931)

    Google Scholar 

  49. P.K. Yadav, S. Chandra, V. Kumar, D. Kumar, S.H. Hasan, Carbon quantum dots: synthesis. Struct. Prop. Catal. Appl. Org. Syn. Catal. 13(2), 422 (2023)

    Google Scholar 

  50. P. Kumar, S. Dua, R. Kaur, M. Kumar, G. Bhatt, A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Adv. 12, 4714–4759 (2022)

    Article  ADS  Google Scholar 

  51. J. Song, L. Zhao, Y. Wang, Y. Xue, Y. Deng, X. Zhao, Q. Li, Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomaterials 8(12), 1043 (2018)

    Article  Google Scholar 

  52. I.M. Al-Essa, Fabrication of carbon nanopowder by arc discharge technique. Iraqi J. Phys. 10(19), 41–46 (2012)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Each co-author has made contributions to the work. The author MMJ prepared the CQDs, wrote the program for optical properties, and writing the article draft. As the author LAA, she supervised the work, contributed to the analysis of the results, and reviewed the article draft.

Corresponding author

Correspondence to Mina Mohammed Jawad.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

The authors would like to declare that they do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, M.M., Abdullah, L.A. Novel characteristics of CQDs synthesized by electrochemical method. J Opt (2024). https://doi.org/10.1007/s12596-024-01687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01687-3

Keywords

Navigation