Skip to main content
Log in

Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

There are many different applications for carbon quantum dots (CQDs), including environmental sensitizers. In this paper, carbon quantum dots prepared by electro-chemical method. X-ray diffraction was used to evaluate the nature and size of matter. The X-ray spectrum showed a distinct peak at 2θ = 31.8° with two other small peaks at 48° and 70°. Also, the FTIR transmittance spectrum was examined to find out the bonds formed for the carbon nanostructures. The primary peaks are the O–H stretching vibration band at 3390 cm−1 and 2924 cm−1, C–H at 2850 cm−1, C=C at 1570 cm−1, C–O–H at 1438 cm−1and 1373 cm−1, C=O at 1111 cm−1, and C–O at 1006 cm−1. In addition, optical properties of the UV–VIS absorption spectrum were investigated, where it has an absorption spectrum peak at 220 nm. The transmission electron microscopy technique results showed that the CQDs are almost spherical and have a limited size distribution of approximately 10 nm on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were created or analyzed during the current study.

References

  1. S.N. Topkaya, M. Azimzadeh, M. Ozsoz, Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis 28(7), 1402–1419 (2016)

    Article  Google Scholar 

  2. A.M.M. Hasan, A. Reza, M. Islam, A.B.H. Susan, Carbon dots as nano-modules for energy conversion and storage. Mater. Today Commun. 29, 102732 (2021)

    Article  Google Scholar 

  3. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  Google Scholar 

  4. X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front. Chem. 7, 671 (2019)

    Article  ADS  Google Scholar 

  5. A. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)

    Article  Google Scholar 

  6. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015)

    Article  Google Scholar 

  7. R. Rao, C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama et al., Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12, 11756–11784 (2018)

    Article  Google Scholar 

  8. K.D. Patel, R.K. Singh, H.W. Kim, Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz. 3, 434–469 (2019)

    Article  Google Scholar 

  9. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004)

    Article  Google Scholar 

  10. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)

    Article  Google Scholar 

  11. F. Ahmad, A.M. Khan, Carbon quantum dots: nano lights. Int. J. Petrochem. Sci. Eng. 2, 247–250 (2017)

    Article  Google Scholar 

  12. S. Yang, J. Sun, X. Li, W. Zhou, Z. Wang, P. He, G. Ding, X. Xie, Z. Kang, M. Jiang, Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. 2, 8660–8667 (2014)

    Article  Google Scholar 

  13. H. Guo, Z. Liu, X. Shen, L. Wang, One-pot synthesis of orange emissive carbon quantum dots for all-type high color rendering index white light-emitting diodes. ACS Sustain. Chem. Eng. 10, 8289–8296 (2022)

    Article  Google Scholar 

  14. E.E. Toma, G. Stoian, B. Cojocaru, V.I. Parvulescu, S.M. Coman, ZnO/CQDs nanocomposites for visible light photodegradation of organic pollutants. Catalysts 12, 952 (2022)

    Article  Google Scholar 

  15. S. Subedi, A.K. Rella, L.G. Trung, V. Kumar, S.-W. Kang, Electrically switchable anisometric carbon quantum dots exhibiting linearly polarized photoluminescence: syntheses, anisotropic properties, and facile control of uniaxial orientation. ACS Nano 16, 6480–6492 (2022)

    Article  Google Scholar 

  16. L. Gu, J. Zhang, G. Yang, Y. Tang, X. Zhang, X. Huang, W. Zhai, E.K. Fodjo, C. Kong, Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid. Food Chem. 376, 131898 (2022)

    Article  Google Scholar 

  17. Y. Chen, B. Xue, A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts 1, 142 (2020)

    Article  Google Scholar 

  18. E. Parya, J.-W. Rhim, Pectin/carbon quantum dots fluorescent film with the ultraviolet blocking property through light conversion. Colloids Surf. B Biointerfaces 219, 112804 (2022)

    Article  Google Scholar 

  19. P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes. Carbon Nanotub. 80, 391–425 (2001)

    Article  ADS  Google Scholar 

  20. F.R. Baptista, S.A. Belhout, S. Giordani, S.J. Quinn, Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44, 4433–4453 (2015)

    Article  Google Scholar 

  21. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  Google Scholar 

  22. A. Cayuela, S. Benítez-Martínez, M.L. Soriano, Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. TrAC Trends Anal. Chem. 84, 172–180 (2016)

    Article  Google Scholar 

  23. J. Pardo, Z. Peng, R.M. Leblanc, Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23, 378 (2018)

    Article  Google Scholar 

  24. T. Sahar, K. Abnous, S.M. Taghdisi, M. Ramezani, M. Alibolandi, Hybrid carbon-based materials for gene delivery in cancer therapy. J. Control Release 318, 158–175 (2020)

    Article  Google Scholar 

  25. C. Mingjun, Y. Cao, Y. Zhu, W. Peng, Y. Li, F. Zhang, Q. Xia, X. Fan, Oxidation-modulated CQDs derived from covalent organic frameworks as enhanced fluorescence sensors for the detection of chromium (VI) and ascorbic acid. Ind. Eng. Chem. Res. 31, 11484–11493 (2022)

    Google Scholar 

  26. G. Murali, B. Kwon, H. Kang, J.K.R. Modigunta, S. Park, S. Lee, H. Lee, Y.H. Park, J. Kim, S.Y. Park et al., Hematoporphyrin photosensitizer-linked carbon quantum dots for photodynamic therapy of cancer cells. ACS Appl. Nano Mater. 5, 4376–4385 (2022)

    Article  Google Scholar 

  27. P. Li, M. Yu, X. Ke, X. Gong, Z. Li, X. Xing, Cytocompatible amphipathic carbon quantum dots as potent membrane-active antibacterial agents with low drug resistance and effective inhibition of biofilm formation. ACS Appl. Bio Mater. 5, 3290–3299 (2022)

    Article  Google Scholar 

  28. Y. Wu, D. Qin, Z. Luo, S. Meng, G. Mo, X. Jiang, B. Deng, High quantum yield boron, and nitrogen codoped carbon quantum dots with red/purple emissions for ratiometric fluorescent IO4 sensing and cell imaging. ACS Sustain. Chem. Eng. 10, 5195–5202 (2022)

    Article  Google Scholar 

  29. A. Kaur, K. Pandey, R. Kaur, N. Vashishat, M. Kaur, Nanocomposites of carbon quantum dots and graphene quantum dots: environmental applications as sensors. Chemosensors 10, 367 (2022)

    Article  Google Scholar 

  30. V. Sharma, V. Vishal, G. Chandan, A. Bhatia, S. Chakrabarti, M. Bera, Green, sustainable, and economical synthesis of fluorescent nitrogen-doped carbon quantum dots for applications in optical displays and light-emitting diodes. Mater. Today Sustain. 19, 100184 (2022)

    Article  Google Scholar 

  31. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012)

    Article  Google Scholar 

  32. K. Hola, A.B. Bourlinos, O. Kozak, K. Berka, K.M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E.P. Giannelis et al., Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon 70, 279–286 (2014)

    Article  Google Scholar 

  33. A. Sciortino, E. Marino, B. van Dam, P. Schall, M. Cannas, F. Messina, Solvatochromism un-ravels the emission mechanism of carbon nanodots. J. Phys. Chem. Lett. 17, 3419–3423 (2016)

    Article  Google Scholar 

  34. A. Dager, T. Uchida, T. Maekawa, M. Tachibana, Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci. Rep. 9, 14004 (2019)

    Article  ADS  Google Scholar 

  35. W. Zhang, S.F. Yu, L. Fei, L. Jin, S. Pan, P. Lin, Large-area color controllable remote carbon white-light light-emitting diodes. Carbon 85, 344–350 (2015)

    Article  Google Scholar 

  36. B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, S. Prantl, R. Godin, J.R. Durrant, E. Reisner, Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping. Angew. Chem. 129, 6559–6563 (2017)

    Article  ADS  Google Scholar 

  37. Y. Tingting, H. Wang, C. Guo, Y. Zhai, J. Yang, J. Yuan, Rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties. R. Soc. Open Sci. 7, 180245 (2018)

    Google Scholar 

  38. L. Haitao, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties, and applications. J. Mater. Chem. 46, 24230–24253 (2012)

    Google Scholar 

  39. Y. Zheng, D. Yang, X. Wu, H. Yan, Y. Zhao, B. Feng, K. Duan, J. Weng, J. Wang, A facile approach for synthesizing highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv. 5, 90245–90254 (2015)

    Article  ADS  Google Scholar 

  40. M. Semeniuk, Z. Yi, V. Poursorkhabi, J. Tjong, S. Jaffer, Z.-H. Lu, M. Sain, Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 6, 6224–6255 (2019)

    Article  Google Scholar 

  41. K.D. Bomben, J.F. Moulder, W.F. Stickle, P.E. Sobol, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS, Physical Electronics, Eden Prairie; Perkin-Elmer Corporation: Waltham (MA, USA, 1995)

    Google Scholar 

  42. L.M. Shen, J. Liu, New development in carbon quantum dots technical applications. Talanta 157, 245–256 (2016)

    Article  Google Scholar 

  43. R. Melikov, D.A. Press, B. GaneshKumar, S. Sadeghi, S. Nizamoglu, Unravelling radiative energy transfer in solid-state lighting. J. Appl. Phys. 123, 023103 (2018)

    Article  ADS  Google Scholar 

  44. Y. Zhou, S.K. Sharma, Z. Peng, R.M. Leblanc, Polymers in carbon dots: a review. Polymers 9, 67 (2017)

    Article  Google Scholar 

  45. A. Kolanowska, G. Dzido, M. Krzywiecki, M.M. Tomczyk, D. Łukowiec, S. Ruczka, S. Boncel, Carbon quantum dots from amino acids revisited: survey of renewable precursors toward high quan-tum-yield blue and green fluorescence. ACS Omega 45, 41165–41176 (2022)

    Article  Google Scholar 

  46. S. Qiang, L. Zhang, Z. Li, J. Liang, P. Li, J. Song, K. Guo, Z. Wang, Q. Fan, New insights into the cellular toxicity of carbon quantum dots to Escherichia coli. Antioxidants 11, 2475 (2022)

    Article  Google Scholar 

  47. L.E. Burs, Electron–electron and electron hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  48. S. Paulo, G. Stoica, W. Cambarau, E.M. Ferrero, E. Polomares, Synth. Metals 222, 17 (2016)

    Article  Google Scholar 

  49. Y. Guo, L. Zhang, F. Cao, Y. Leng, Scient. Report. 6, 35795 (2016)

    Article  ADS  Google Scholar 

  50. A. Mewada, S. Randey, M. Thakur, D. Jadhav, M. Sharon, J. Mater. Chem. B 2, 700 (2014)

    Article  Google Scholar 

  51. M. Sun, X. Ma, X. Chen, Y. Sun, X. Cui, Y. Lin, RSC Adv. 4, 1121–1126 (2014)

    ADS  Google Scholar 

  52. N.L. Hussein, K.S. Khashan, H.M. Rasheed, H.Y. Hammoud, R.M.S. ALHaddad, Simulation of optical energy gap for synthesis carbon quantum dot by laser ablation. Iraqi J. Sci. 60, 52–56 (2019)

    Google Scholar 

  53. Y.A. Mahmood, B.T. Chiad, Synthesis and spectroscopic study of highly fluorescent carbon dots derived from orange juice with stilbene 420 dye. Iraqi J. Phys. 18(44), 62–68 (2020)

    Article  Google Scholar 

  54. I.M. Al-Essa, Fabrication of carbon nanopowder by arc discharge technique. Iraqi J. Phys. 10, 41–46 (2012)

    Google Scholar 

  55. S.M. Samaa, H.H Falah, J.A Abbas, Carbon nanotubes: synthesis via flame fragment deposition (FFD) method from liquefied petroleum gas. Baghdad Sci. J. 451–459 (2023)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Each co-author has made unique contributions to the work. The author LAH prepared the thin films and contributed to writing the article draft and wrote the program for optical properties and contributed to the analysis of the results. As the author RKJ, he supervised the work and reviewed the article draft.

Corresponding author

Correspondence to Lana Ali Essa.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Ethical approval

The authors would like to declare that they do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essa, L.A., Jamal, R.K. Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method. J Opt 53, 1574–1580 (2024). https://doi.org/10.1007/s12596-023-01328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01328-1

Keywords

Navigation