Skip to main content
Log in

Implementation of universal logic gates using 2:1 photonic multiplexer (MUX) of electro-optic Mach–Zehnder interferometer

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper introduces an innovative methodology for constructing NAND and NOR logic gates utilizing a 2:1 Multiplexer (MUX) based on a titanium-diffused lithium niobate electro-optic Mach–Zehnder interferometer. To optimize design efficiency and minimize the number of photonic MUX, Shannon Decomposition and Reduced Binary Decision Diagram mapping are employed for creating photonic MUX-based combinational and logic circuits. Comprehensive simulation and verification using OPTIBPM, a beam propagation method, confirm the validity of the proposed design. The 2:1 MUX-based NAND and NOR logic gates demonstrate a rapid response time of 1.56 ps, positioning them as advantageous solutions for communication systems, transmission networks, and industrial applications. Essential device parameters including extinction ratio, contrast ratio, amplitude modulation, insertion loss, and eye-opening coefficients of NAND and NOR gates, fall within acceptable limits, and electro-optic Mach–Zehnder interferometers using lithium niobate prove suitable for terahertz data speed applications. Simulation results robustly validate the proposed logic gates, contributing to the advancement of high-speed optical networking and signal processing systems based on photonic MUX configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Guchhait, N. Pahari, N.B. Manik, Optical Kerr nonlinear material for expressing the trigonometric ratios of compound angles. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01245-3

    Article  Google Scholar 

  2. A. Guchhait, N. Pahari, N.B. Manik, Optical Kerr nonlinear material for calculating the coefficient of binomial expansion under any positive integral index. J. Opt. 51, 851–865 (2022). https://doi.org/10.1007/s12596-021-00823-7

    Article  Google Scholar 

  3. M. Mandal, P. De, S. Lakshan et al., A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing. J. Opt. 52, 603–611 (2023). https://doi.org/10.1007/s12596-022-01045-1

    Article  Google Scholar 

  4. S. Verma, R. Randhawa, H. Kaur, Filtering investigation for enhanced performance of MZM–MZI integrated switching network. J. Opt. 52, 417–423 (2023). https://doi.org/10.1007/s12596-022-00900-5

    Article  Google Scholar 

  5. M. Mandal, I. Goswami, S. Mukhopadhyay, Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly. J. Opt. 52, 145–153 (2023). https://doi.org/10.1007/s12596-022-00869-1

    Article  Google Scholar 

  6. S. Bosu, B. Bhattacharjee, All-optical dibit-based Feynman gate using reflective semiconductor optical amplifier with frequency encoding scheme. J. Opt. 52, 33–41 (2023). https://doi.org/10.1007/s12596-022-00875-3

    Article  Google Scholar 

  7. S. Bosu, B. Bhattacharjee, A design of all-optical read-only memory using reflective semiconductor optical amplifier. J. Opt. 52, 1083–1093 (2023). https://doi.org/10.1007/s12596-022-00943-8

    Article  Google Scholar 

  8. P. De, S. Ranwa, S. Mukhopadhyay, Alternative scheme for implementation of 3 qubit Fredkin gate with photonic bandgap crystal. Opt. Laser Technol. 167, 109804 (2023). https://doi.org/10.1016/j.optlastec.2023.109804

    Article  CAS  Google Scholar 

  9. B. Sarkar, S. Lakshan, S. Mukhopadhyay, All-optical method of generation of phase shift keying data using optical pockels crystal. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01292-w

    Article  Google Scholar 

  10. B. Sarkar, S. Mukhopadhyay, An all-optical system for implementing integrated Hadamard-Pauli quantum logic. J. Opt. Commun. 44(2), 229–235 (2023). https://doi.org/10.1515/joc-2019-0093

    Article  Google Scholar 

  11. S. Dey, A. Chatterjee, S. Mukhopadhyay, Photonic scheme for developing Manchester-coded data using laser-based Kerr switch. J. Opt. 50, 341–345 (2021). https://doi.org/10.1007/s12596-021-00710-1

    Article  Google Scholar 

  12. S. Dey, S. Mukhopadhyay, All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding. J. Opt. 48, 520–526 (2019). https://doi.org/10.1007/s12596-019-00568-4

    Article  Google Scholar 

  13. S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using Kerr effect. Optoelectron. Lett. 15, 317–320 (2019). https://doi.org/10.1007/s11801-019-8170-x

    Article  ADS  Google Scholar 

  14. M.K. Garai, M.K. Mandal, S.K. Garai, An alternative approach of developing a frequency encoded data based asynchronous counter in C-band. J. Opt. 52, 2007–2022 (2023). https://doi.org/10.1007/s12596-023-01189-8

    Article  Google Scholar 

  15. M.K. Garai, M.K. Mandal, S.K. Garai, All-optical programmable array logic unit using semiconductor optical amplifier-based polarization switch. J. Mod. Opt. 69(21), 1171–1197 (2022). https://doi.org/10.1080/09500340.2022.2159084

    Article  ADS  Google Scholar 

  16. M.K. Garai, M.K. Mandal, S.K. Garai, Alternative approach of developing frequency encoded BCD encoder and decoder with polarisation switches. J. Opt. 51, 565–573 (2022). https://doi.org/10.1007/s12596-021-00818-4

    Article  Google Scholar 

  17. D. Mandal, M.K. Garai, M.K. Mandal et al., An alternative approach to design a frequency encoded 3-bit synchronous counter using semiconductor optical amplifier-based polarization switch. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01447-9

    Article  Google Scholar 

  18. N. Pahari, All-optical BCD to excess 3 code encoder with proper use of optical non-linear material. J. Opt. 47, 110–114 (2018). https://doi.org/10.1007/s12596-017-0432-z

    Article  Google Scholar 

  19. S.K. Das, N. Pahari, Binary to hexadecimal decoder using pockels’ effect guided Mach-Zehnder interferometer (MZI) and optical tree architecture. Braz. J. Phys. 54, 26 (2024). https://doi.org/10.1007/s13538-023-01389-4

    Article  ADS  Google Scholar 

  20. S.K. Das, N. Pahari, A new scheme of 2: 1 photonic multiplexer and multiplexer-based NOT, OR, AND logic gates in electro-optic Mach-Zehnder interferometer. e-Prime-Adv. Electr. Eng., Electron. Energy 6, 100375 (2023). https://doi.org/10.1016/j.prime.2023.100375

    Article  Google Scholar 

  21. S.K. Das, N. Pahari, A new scheme of (2:1) multiplexer (Mux) and mux-based logic gates using shannon decomposition theorem and reduced binary decision diagram (Rbdd) in electro optic Mach–Zehnder interferometer. Available at SSRN: https://ssrn.com/abstract=4429115 or https://doi.org/10.2139/ssrn.4429115

  22. S.K. Das, N. Pahari, Binary to hexadecimal decoder using pockel’s effect guided Mach–Zehnder interferometer (MZI), 24 April 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2839291/v1

  23. N. Pahari, A. Guchhait, A.D. Jana, Image edge detection scheme by the use of Kerr type nonlinear material and the verification of the scheme by computer simulation. J. Opt. 41, 178–183 (2012). https://doi.org/10.1007/s12596-012-0082-0

    Article  Google Scholar 

  24. N. Pahari, All optical even and odd parity bit generator and checker with optical nonlinear material. J. Opt. 46, 336–341 (2017). https://doi.org/10.1007/s12596-016-0377-7

    Article  Google Scholar 

  25. N. Mitra, D. Samanta, S. Mukhopadhyay, An all-optical architecture of serial to parallel converter by using Kerr type of non-linear material. J. Opt. 39, 115–121 (2010). https://doi.org/10.1007/s12596-010-0010-0

    Article  Google Scholar 

  26. D. Samanta, Implementation of optical Manchester coded data using Kerr type of nonlinear material. J. Opt. 51, 899–902 (2022). https://doi.org/10.1007/s12596-022-00830-2

    Article  Google Scholar 

  27. A. Kotb, K.E. Zoiros, W. Li, Numerical study of carrier reservoir semiconductor optical amplifier-based all-optical XOR logic gate. J. Mod. Opt. 68(3), 161–168 (2021). https://doi.org/10.1080/09500340.2021.1885760

    Article  MathSciNet  CAS  ADS  Google Scholar 

  28. A. Kotb, C. Guo, Reflective semiconductor optical amplifiers-based all-optical NOR and XNOR logic gates at 120 Gb/s. J. Modern Opt. 67(18), 1424–1435 (2020). https://doi.org/10.1080/09500340.2020.1862333

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. X. Chen, L. Huo, Z. Zhao, L. Zhuang, C. Lou, Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s. IEEE Photon. Technol. Lett. 28(21), 2463–2466 (2016). https://doi.org/10.1109/LPT.2016.2601079

    Article  ADS  Google Scholar 

  30. D. Azhigulov, I.A. Ukaegbu, H.H. Park, The design of universal logic gates using microring resonator structures. in Proc. SPIE 10912, Physics and Simulation of Optoelectronic Devices XXVII, 1091218 (2019). https://doi.org/10.1117/12.2511173

  31. A. Godbole, P.P. Dali, V. Janyani, T. Tanabe, G. Singh, All optical scalable logic gates using Si3N4 microring resonators. IEEE J. Sel. Topics Quant. Electron. 22(6), 326–333 (2016). https://doi.org/10.1109/JSTQE.2016.2593278

    Article  CAS  ADS  Google Scholar 

  32. P. Sethi, S. Roy, All-optical ultrafast XOR/XNOR logic gates, binary counter, and double-bit comparator with silicon microring resonators. Appl. Opt. 53, 6527–6536 (2014). https://doi.org/10.1364/AO.53.006527

    Article  CAS  PubMed  ADS  Google Scholar 

  33. M. Razaghi, A. Nosratpour, N.K. Das, Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier. Quant. Electron. 43(2), 184 (2013). https://doi.org/10.1070/QE2013v043n02ABEH014855

    Article  CAS  ADS  Google Scholar 

  34. S.K. Chandra, S. Biswas, S. Mukhopadhyay, Phase-encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four-wave mixing in semiconductor optical amplifier. IET Optoelectron. 10(1), 1–6 (2016). https://doi.org/10.1049/iet-opt.2014.0066

    Article  CAS  Google Scholar 

  35. P. Velanas, A. Bogris, D. Syvridis, Operation properties of a reconfigurable photonic logic gate based on cross phase modulation in highly nonlinear fibers. Opt. Fiber Technol. 15(1), 65–73 (2009). https://doi.org/10.1016/j.yofte.2008.06.002

    Article  ADS  Google Scholar 

  36. H.M. Hussein, T.A. Ali, N.H. Rafat, New designs of a complete set of photonic crystals logic gates. Opt. Commun. 411, 175–181 (2018). https://doi.org/10.1016/j.optcom.2017.11.043

    Article  CAS  ADS  Google Scholar 

  37. P. Jindal, M. Abou Houran, D. Goyal, A. Choudhary, A review of different techniques used to design photonic crystal-based logic gates. Optik 280, 170794 (2023). https://doi.org/10.1016/j.ijleo.2023.170794

    Article  ADS  Google Scholar 

  38. S. Hazra, S. Mukhopadhyay, Two-dimensional photonic crystal based optical CNOT gate. Opt. Quant. Electron. 55, 961 (2023). https://doi.org/10.1007/s11082-023-05228-3

    Article  CAS  Google Scholar 

  39. S. Nithya, T. Sridarshini, A review on 2D photonic crystal based all optical logic gates. in 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, 2023, pp. 1–6. https://doi.org/10.1109/IConSCEPT57958.2023.10170001

  40. A. Ghadi, B. Darzi, All-optical nano logical gates AND, NOR, OR, and NOT based on plasmonic waveguides with Kerr nonlinear cavity. Opt. Laser Technol. 157, 108651 (2023). https://doi.org/10.1016/j.optlastec.2022.108651

    Article  CAS  Google Scholar 

  41. P.P. Sahu, Fundamental optical logic gate operations using optically controlled two surfaces plasmonic polariton mode coupler based on graphene clad waveguide. Opt. Eng. 62(3), 038104 (2023). https://doi.org/10.1117/1.OE.62.3.038104

    Article  CAS  ADS  Google Scholar 

  42. K.H. Chang, Z.H. Lin, P.T. Lee et al., Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator. Sci. Rep. 13, 5020 (2023). https://doi.org/10.1038/s41598-023-30823-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. A. Pal et al., Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 35(27), 2109894 (2023). https://doi.org/10.1002/adma.202109894

    Article  CAS  Google Scholar 

  44. Y. Luo, D. Mengu, A. Ozcan, Cascadable all-optical NAND gates using diffractive networks. Sci. Rep. 12, 7121 (2022). https://doi.org/10.1038/s41598-022-11331-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. E.G. Anagha, R.K. Jeyachitra, Review on all-optical logic gates: design techniques and classifications–heading toward high-speed optical integrated circuits. Opt. Eng. 61(6), 060902–060902 (2022). https://doi.org/10.1117/1.OE.61.6.060902

    Article  CAS  ADS  Google Scholar 

  46. G.W. Lu, J. Qin, H. Wang, X. Ji, G.M. Sharif, S. Yamaguchi, Flexible and re-configurable optical three-input XOR logic gate of phase-modulated signals with multicast functionality for potential application in optical physical-layer network coding. Opt. Express 24(3), 2299–2306 (2016). https://doi.org/10.1364/OE.24.002299

    Article  PubMed  ADS  Google Scholar 

  47. S. Takeda, A. Furusawa, Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics (2019). https://doi.org/10.1063/1.5100160

    Article  Google Scholar 

  48. H. Zhang et al., Encoding error correction in an integrated photonic chip. PRX Quant. 4(3), 030340 (2023). https://doi.org/10.1103/PRXQuantum.4.030340

    Article  ADS  Google Scholar 

  49. L.M. Shaker, A. Al-Amiery, W.N.R.W. Isahak et al., Advancements in quantum optics: harnessing the power of photons for next-generation technologies. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01320-9

    Article  Google Scholar 

  50. H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125(19), 5701–5704 (2014). https://doi.org/10.1016/j.ijleo.2014.06.013

    Article  ADS  Google Scholar 

  51. H. Mamnoon-Sofiani, S. Javahernia, All optical NAND/NOR and majority gates using nonlinear photonic crystal ring resonator. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0246

    Article  Google Scholar 

  52. A. Kumar, S. Medhekar, All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal. Opt. Laser Technol. 123, 105910 (2020). https://doi.org/10.1016/j.optlastec.2019.105910

    Article  CAS  Google Scholar 

  53. I. Charles, A. Sreevani, S.V. Krishna et al., Enhanced all-optical Y-shaped plasmonic OR, NOR and NAND gate models, analyses, and simulation for high speed computations. Opt. Quant. Electron. 54, 330 (2022). https://doi.org/10.1007/s11082-022-03699-4

    Article  Google Scholar 

  54. M. Margarat, B.E. Caroline, M. Vinothini, Design of all-optical universal gates and verification of boolean expression using SOA-MZI. in 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), Pondicherry, India, pp. 1–6, (2018). https://doi.org/10.1109/ICSCAN.2018.8541238

  55. S.K. Chandra, S. Mukhopadhyay, All optical alternative approach of conducting NAND and NOR logic gates with phase encoding principle. Optik 123(11), 1022–1025 (2012). https://doi.org/10.1016/j.ijleo.2011.07.022

    Article  ADS  Google Scholar 

  56. K. Choudhary, A. Singh, A. Singh, D. Chaudhary, S. Kumar, Implementation of highly optimized optical all logic gates on a single chip using Ti-diffused lithium-niobate for high-speed processing in combinational circuits. Microelectron. J. 111, 105048 (2021). https://doi.org/10.1016/j.mejo.2021.105048

    Article  CAS  Google Scholar 

  57. S. Dutta, S. Roy, K. Mukherjee, Alternative method of implementation of all-optical NOR and NAND gates using quantum-dot semiconductor optical amplifiers in non-interferometer structure. J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2021-0101

    Article  Google Scholar 

  58. K. Maji, K. Mukherjee, A. Raja, Analysis of tera hertz optical asymmetric demultiplexer (TOAD) based optical switch using soliton pulse. in 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Kolkata, India, 2018, pp. 485–488. https://doi.org/10.1109/EDKCON.2018.8770490

  59. M. Tajaldini, M.Z. Mat Jafri, Proposal of ultra-compact NAND/NOR/XNOR all-optical logic gates based on a nonlinear 3x1 multimode interference. in Proceeding of SPIE 9136, Nonlinear Optics and Its Applications VIII; and Quantum Optics III, 91361L (2014). https://doi.org/10.1117/12.2052099

  60. A. Sinha, D. Bhardwaj, V. Shukla, Comparative analysis of optical data center switches. J. Opt. Commun. (2023). https://doi.org/10.1515/joc-2023-0126

    Article  Google Scholar 

  61. K. Mukherjee, Ultra-fast AND gate using single semi-reflective quantum dot semiconductor optical amplifier. Photon Netw. Commun. 45, 97–106 (2023). https://doi.org/10.1007/s11107-023-00996-0

    Article  Google Scholar 

  62. D. Ulieru, O.M. Ulieru, The comparative analysis of 2D photonic crystals applications based on specific modeling/simulation results. in Proceeding of SPIE 12584, Smart Materials for Opto-Electronic Applications, 125840C (2023). https://doi.org/10.1117/12.2665488

  63. K. Mukherjee, Three input NAND gate using quantum dot semiconductor optical amplifier. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01501-6

    Article  Google Scholar 

  64. V. Sharma, A. Sinha, Low threshold electro-optic switch and TE/TM polarization selector using liquid crystal channel waveguide. Opt. Laser Technol. 159, 108987 (2023). https://doi.org/10.1016/j.optlastec.2022.108987

    Article  CAS  Google Scholar 

  65. A. Ikhlef, H. Badaoui, M. Abri et al., Proposal of an efficient all optical photonic crystal full adder based nonlinear ring resonators. Opt. Quant. Electron. 55, 774 (2023). https://doi.org/10.1007/s11082-023-05063-6

    Article  CAS  Google Scholar 

  66. E.L. Wooten et al., A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Select. Topics Quant. Electron. 6(1), 69–82 (2000). https://doi.org/10.1109/2944.826874

    Article  CAS  ADS  Google Scholar 

  67. H. Jin, F.M. Liu, P. Xu, J.L. Xia, M.L. Zhong, Y. Yuan, J.W. Zhou, Y.X. Gong, W. Wang, S.N. Zhu, On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113(10), 103601 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  68. S. Dewra, R.S. Kaler, Performance analysis of optical network based on optical add drop multiplexers with different MZI techniques. Optik 124(4), 347–351 (2013). https://doi.org/10.1016/j.ijleo.2011.12.060

    Article  ADS  Google Scholar 

  69. Y. Qi, Y. Li, Integrated lithium niobate photonics. Nanophotonics 9(6), 1287–1320 (2020). https://doi.org/10.1515/nanoph-2020-0013

    Article  CAS  Google Scholar 

  70. S. Awasthi, B. Chowdhury, V. Janyani et al., Configuring a reversible full adder using the Pockels electro-optic effect of a Ti:LiNbO3 -based MZI. J. Comput. Electron. 22, 485–496 (2023). https://doi.org/10.1007/s10825-022-01991-w

    Article  Google Scholar 

  71. G. Singh, Ti in diffused lithium niobate (Ti: LiNbO3) MachZehnder interferometer all optical switches: a review. New, Adv. Technol. 312–322 (2010)

  72. Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha, J.G. Chung, A novel multiplexer-based low-power full adder. IEEE Trans. Circuits Syst. II Express Briefs 51(7), 345–348 (2004). https://doi.org/10.1109/TCSII.2004.831429

    Article  Google Scholar 

  73. P.P. Sahu, A compact optical multiplexer using silicon nano-waveguides. IEEE J. Select. Topics Quant. Electron. 15(5), 1537–1541 (2009). https://doi.org/10.1109/JSTQE.2009.2022048

    Article  CAS  ADS  Google Scholar 

  74. M.J. Maleki, M. Soroosh, An ultra-fast all-optical 2-to-1 digital multiplexer based on photonic crystal ring resonators. Opt. Quant. Electron. 54, 397 (2022). https://doi.org/10.1007/s11082-022-03781-x

    Article  Google Scholar 

  75. J.N. Roy, A.K. Maiti, S. Mukhopadhyay, Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture. Chin. Opt. Lett. 4, 483–486 (2006)

    ADS  Google Scholar 

  76. S. Bashiri, K. Fasihi, A 2 × 1 all-optical multiplexer using Kerr nonlinear nano-plasmonic switch. Opt. Quant. Electron. 51, 374 (2019). https://doi.org/10.1007/s11082-019-2080-9

    Article  CAS  Google Scholar 

  77. C.Y. Lee, Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38(4), 985–999 (1959). https://doi.org/10.1002/j.1538-7305.1959.tb01585.x

    Article  MathSciNet  Google Scholar 

  78. Akers, Binary decision diagrams. IEEE Trans. Comput. 100(6), 509–516 (1978). https://doi.org/10.1109/TC.1978.1675141

    Article  Google Scholar 

  79. B.M.E. Moret, Decision trees and diagrams. Comput. Surv. 14, 593–623 (1982)

    Article  Google Scholar 

  80. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C35(8), 677–691 (1986)

    Article  Google Scholar 

  81. B.E.A. Saleh, M.C. Teich, Fundamentals of photonics. Publisher: Wiley, Inc. ISBNs: 0-471-83965-5 (Hardback),0-471-2-1374-8 (Electronic), pp. 698, (1991)

  82. S.K. Raghuwanshi, A. Kumar, S. Kumar, 1×4 signal router using 3 Mach-Zhender interferometers. Opt. Eng. 52(3), 035002 (2013). https://doi.org/10.1117/1.OE.52.3.035002

    Article  ADS  Google Scholar 

  83. A. Kumar et al., Implementation of full-adder and full-subtractor based on electro-optic effect in Mach-Zehnder interferometers. Opt. Commun. 324, 93–107 (2014). https://doi.org/10.1016/j.optcom.2014.03.045

    Article  CAS  ADS  Google Scholar 

  84. A. Kumar, S. Kumar, S.K. Raghuwanshi, Implementation of XOR/XNOR and AND logic gates by using Mach-Zehnder interferometers. Optik 125(19), 5764–5767 (2014). https://doi.org/10.1016/j.ijleo.2014.07.037

    Article  ADS  Google Scholar 

  85. S.K. Raghuwanshi, A. Kumar, N.K. Chen, Implementation of sequential logic circuits using the Mach-Zehnder interferometer structure based on electro-optic effect. Opt. Commun. 333, 193–208 (2014). https://doi.org/10.1016/j.optcom.2014.07.066

    Article  CAS  ADS  Google Scholar 

  86. C. Shannon, The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28, 59–98 (1949)

    Article  MathSciNet  Google Scholar 

  87. V. Shmerko et al, Information theoretical approach to minimization of AND/EXOR expressions of switching functions. IEEE Xplore: 06 August 2002. https://doi.org/10.1109/TELSKS.1999.806249

  88. J.K. Rakshit, J.N. Roy, T. Chattopadhyay, Design of micro-ring resonator based all-optical parity generator and checker circuit. Opt. Commun. 303, 30–37 (2013). https://doi.org/10.1016/j.optcom.2013.03.025

    Article  CAS  ADS  Google Scholar 

  89. K.E. Zoiros, G. Papadopoulos, T. Houbavlis, G.T. Kanellos, Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt. Commun. 258, 114–134 (2006). https://doi.org/10.1016/j.optcom.2005.07.059

    Article  CAS  ADS  Google Scholar 

  90. A. Kumari, A. Pal, A. Singh, S. Sharma, All-optical binary to gray code converter using non-linear material based MIM waveguide. Optik 200, 163449 (2020). https://doi.org/10.1016/j.ijleo.2019.163449

    Article  ADS  Google Scholar 

  91. D.K. Gayen, All-optical 3:8 decoder with the help of terahertz optical asymmetric demultiplexer. Opt. Photon. J. 6, 184–192 (2016). https://doi.org/10.4236/opj.2016.67020

    Article  CAS  ADS  Google Scholar 

  92. T. Chattopadhyay, J.N. Roy, An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder. J. Opt. A Pure Appl. Opt. 11(7), 075501 (2009). https://doi.org/10.1088/1464-4258/11/7/075501

    Article  CAS  ADS  Google Scholar 

  93. T. Daghooghi, M. Soroosh, K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators. Optik 174, 400–408 (2018). https://doi.org/10.1016/j.ijleo.2018.08.090

    Article  CAS  ADS  Google Scholar 

  94. M. Margarat, B. Elizabeth Caroline, V. Nivedha, S. Sowmiya, D. Purushothaman, All optical 3-bit octal to binary code converter using micro-ring resonator. in Journal of Physics: Conferences Series, vol. 1717, p. 012059. https://doi.org/10.1088/1742-6596/1717/1/012059

  95. M.J. Maleki, M. Soroosh, A. Mir, Ultra-fast all-optical 2-to-4 decoder based on a photonic crystal structure. Appl. Opt. 59, 5422–5428 (2020). https://doi.org/10.1364/AO.392933

    Article  CAS  ADS  Google Scholar 

  96. H. Kumar, L. Kumar, V. Janyani, B. Oleh, U. Serhij, G. Singh, Gray to binary code converter using Ti-in diffused lithium niobate based Mach–Zehnder interferometer. in Optronix-2016, Kolkata, Advances in Optical Science and Engineering, Springer proceedings in Physics, vol. 194, pp. 257–262, ISBN 987–981–10–3907–2, DOI https://doi.org/10.1007/978-981-10-3908-9_31, © Springer Nature Singapore Pte Ltd. 2017

  97. G.K. Bharti, J.K. Rakshit, Design and performance analysis of high speed optical binary code converter using micro-ring resonator. Fiber Integr. Opt. (2018). https://doi.org/10.1080/01468030.2018.1430872

    Article  Google Scholar 

  98. V.K. Srivastava, A. Pal, S. Sharma, Design of linear block code encoder and decoder using electro-optical and all-optical units. J. Opt. Commun. 44(3), 323–332 (2023). https://doi.org/10.1515/joc-2019-0085

    Article  Google Scholar 

Download references

Acknowledgements

We certify that all mentioned authors have read, reviewed, and approved the paper and that no other individuals who meet the requirements for authorship but are not listed have contributed to the work. We further reaffirm that we all approved of the order in which the authors are listed in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Kumar Das.

Ethics declarations

Conflict of interest

Regarding the information presented in the manuscript, we certify that there are no financial organisations with whom we have a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Pahari, N. Implementation of universal logic gates using 2:1 photonic multiplexer (MUX) of electro-optic Mach–Zehnder interferometer. J Opt (2024). https://doi.org/10.1007/s12596-023-01642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01642-8

Keywords

Navigation