Skip to main content
Log in

Design of transmission gate using electro-optic effect of lithium niobate based Mach–Zehnder interferometers

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical integrated circuits for computing and information processing could overcome the speed limitations of semiconductor electronics. However, in photonics, very few fundamental building blocks equivalent to those used in multi-functional electronic circuits exist. In this paper, transmission gate based on electro-optic effect inside lithium niobate based Mach–Zehnder interferometers (MZI) is described. Transmission gates are typically used as building blocks for logic circuitry in integrated circuit design. It is a combination of NMOS and PMOS transistors. Lithium niobate based MZI has a phenomenal competence to switching optical signal to a desired output port. Here, proposed device is elucidated with the help of mathematical description and thereafter simulation using MATLAB. 2 \(\times \) 1 multiplexer is also designed using proposed transmission gate. The study is verified using beam propagation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meindl, J.: Special issue on limits of semiconductor technology. Proc. IEEE 89, 223–226 (2001)

    Article  Google Scholar 

  2. Caulfield, H.J.: The unique advantages of optics over electronics for interconnections. Proc. SPIE 1390, 399–402 (1990)

    Article  Google Scholar 

  3. Caulfield, H.J., Shamir, J.: Wave particle duality considerations in optical computing. Appl. Opt. 28, 2184–2186 (1989)

    Article  Google Scholar 

  4. Caulfield, H.J., Collins Jr., S.A.: Optical holographic interconnects: categorization and potential efficient passive resonated holograms. J. Opt. Soc. Am. 6, 1568–1577 (1989)

    Article  Google Scholar 

  5. Caulfield, H.J., Shamir, J.: Wave-particle-duality processors: characteristics, requirements and applications. J. Opt. Soc. Am. 7, 1314–1323 (1990)

    Article  Google Scholar 

  6. Goodman, J.W., Leonberger, F.I., Kung, S.Y., Athale, R.A.: Optical interconnections for VLSI systems. Proc. IEEE 72, 850–866 (1984)

    Article  Google Scholar 

  7. Huang, C.Y., Lin, C.H., Chen, Y.H., Huang, Y.C.: Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter. Opt. Express 15, 2548–2554 (2007)

    Article  Google Scholar 

  8. Chattopadhyay, T., Roy, J.N.: Design of SOA-MZI based all-optical programmable logic device (PLD). Opt. Commun. 283, 2506–2517 (2010)

    Article  Google Scholar 

  9. Solgaard, O., Godil, A.A., Howe, R.T., Luke, L.P., Peter, Y., Zappe, H.: Optical MEMS from micro-mirrors to complex systems. J. Micro Electro Mech. Syst. 23, 517–538 (2014)

    Article  Google Scholar 

  10. Chattopadhyay, T.: All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit. Opt. Fiber Technol. 17, 558–567 (2011)

    Article  Google Scholar 

  11. Bakhtiar, L.A., Yaghoubi, E., Adami, A., Hamidi, S.M., Hosseinzadeh, M.: Three-input majority function with nonlinear material in all-optical domain. J. Opt. 42, 349–354 (2013)

    Article  Google Scholar 

  12. Gayen, D.K., Bhattachryya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Lightwave Technol. 30, 3387–3393 (2012)

    Article  Google Scholar 

  13. Schreieck, R., Kwakernaak, M., Jackel, H., Gamper, E., Gini, E., Vogt, W., Melchior, H.: Ultrafast switching dynamics of Mach–Zehnder interferometer switches. IEEE Photon. Technol. Lett. 13, 603–605 (2001)

    Article  Google Scholar 

  14. Sohler, W., Hu, H., Ricken, R., Quiring, V., Vannahme, C., Herrmann, H., Büchter, D., Reza, S., Grundkötter, W., Orlov, S., Suche, H., Nouroozi, R., Min, Y.: Integrated optical devices in lithium niobate. Opt. Photon. News 19, 24–31 (2008)

    Article  Google Scholar 

  15. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits, 2nd edn. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  16. Kang, S., Leblebici, Y.: CMOS Digital Integrated Circuits Analysis and Design, 3rd edn. McGraw-Hill, Noida (2002)

    Google Scholar 

  17. Wooten, EdL, Kissa, K.M., Yan, A.Y., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., Bossi, D.E.: A review of lithium niobate modulator for fiber optic communication. IEEE J. Sel. Quant. Electron 6, 69–82 (2000)

    Article  Google Scholar 

  18. Jin, H., Liu, F.M., Xu, P., Xia, J.L., Zhong, M.L., Yuan, Y., Zhou, J.W., Gong, Y.X., Wang, W., Zhu, S.N.: On chip generation and manipulation of entangled photons based on reconfigurable lithium niobate wave guide circuits. Phy. Rev. Lett. 113, 103601 (2014)

    Article  Google Scholar 

  19. Kumar, S., Raghuwanshi, S.K., Kumar, A.: 1 x 4 Signal router using three Mach–zehnder Interferometers. Opt. Eng. 52, 035002 (2013)

    Article  Google Scholar 

  20. Kumar, S., Raghuwanshi, S.K., Kumar, A.: Implementation of optical switches by using Mach–Zehnder interferometer. Opt. Eng. 52, 097–106 (2013)

    Google Scholar 

  21. Kumar, S., Raghuwanshi, S.K., Kumar, A.: Implementation of an optical AND gate using Mach–Zehnder interferometers. Proc. SPIE 9131, 913120 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the project entitled “Performance study of some WDM optical network components and design of optical switching devices” under the Faculty Research Scheme, DIT University, Dehradun, India (Ref. No.: DITU/R&D/2014/7/ECE) undertaken by Dr. Santosh Kumar. The authors would like to thanks to Prof. K. K. Raina, Vice-chancellor of DIT University for motivation and support during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, C., Ranjan, A. & Kumar, S. Design of transmission gate using electro-optic effect of lithium niobate based Mach–Zehnder interferometers. Photon Netw Commun 34, 271–279 (2017). https://doi.org/10.1007/s11107-017-0694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0694-z

Keywords

Navigation