Skip to main content
Log in

Experimental estimation of quality of service parameters at divergent wavelengths and luminous intensities for indoor visible light communication using OOK-NRZ modulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Visible light communication (VLC) is a short-range optical wireless communication technology that attempts to achieve communication alongside illumination using existing infrastructure in the band of 430–790 THz. One of the crucial research gaps in VLC is the absence of an experimental evaluation of performance metric parameters like zero frequency (DC) channel gain, received power, bit error rate (BER) and signal-to-noise ratio at divergent wavelengths and luminous intensities for different optical output power levels. The second research gap is the need for an empirical formulation to estimate the BER for a defined data rate and luminous intensity of the light emitting diode (LED). The objective of this experimental work is to bridge the above two research gaps under a realistic illumination setup. The first gap is addressed by analyzing the impact of divergent output optical power levels of LEDs having different values of luminous intensities and wavelength on QoS parameters. The quality of service (QoS) parameters like transmitted optical power, received optical power, DC gain, quality factor and BER are evaluated and analyzed at a data rate of 1.2 Mbps for a maximum distance of 1 m. The work also evaluates the band of forward LED currents in the range of 12–20 mA to achieve a minimum BER of 10−5–10−7 for a maximum distance of 1 m. The second research gap is worked on by proposing a novel mathematical empirical formulation using fifth-order polynomial curve fitting to estimate the bit error rate (BER) by considering factors of luminous intensity and data rate for a maximal distance of 1 m. The empirical formulation is done using Microsoft EXCEL2010® and MATLAB2023®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

5G:

Fifth Generation

6G:

Sixth Generation

BER:

Bit Error Rate

CDF:

Cumulative Distribution Function

CIR:

Channel Impulse Response

DC:

Direct Current

IC:

Integrated Circuits

IEEE:

Institute of Electrical and Electronics Engineers

LEDs:

Light Emitting Diodes

LOS:

Line of Sight

MGF:

Moment Generating Function

NRZ-OOK:

Non-Return Zero-On Off Keying

PD:

Photo Detectors

PDF:

Probability Distribution Function

PIN:

Positive Intrinsic Negative

PRBS:

Pseudo-Random Binary Sequence

Q:

Quality factor

QoS:

Quality of Service

RF:

Radio Frequency

RMS:

Rootmean square

SNR:

Signal-to-Noise Ratio

TIA:

Trans Impedance Amplifier

THz:

Tera Hertz

TTL:

Transistor Transistor Logic

VLC:

Visible Light Communication

V2V:

Vehicle to Vehicle

WDM:

Wavelength Division Multiplexing

References

  1. L.E.M. Matheus, A.B. Vieira, F.M. Vieira Luiz, M.A.M. Vieira, O. Gnawali, Visible light communication concepts, applications and challenges. IEEE Commun. Surv. Tutor. 21(4), 3204–3237 (2019). https://doi.org/10.1109/COMST.2019.2913348

    Article  Google Scholar 

  2. P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015). https://doi.org/10.1109/COMST.2015.2476474

    Article  Google Scholar 

  3. D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban, LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015). https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  4. B. Vijayalakshmi, P. Gandhimathi, M. Nesasudha, VLC channel characteristics and data transmission model in indoor environment for future communication: an overview. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01316-5

    Article  Google Scholar 

  5. L. Junhai, L. Fan, H. Li, Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutor. 19, 2871–2893 (2017). https://doi.org/10.1109/COMST.2017.2743228

    Article  Google Scholar 

  6. D.H. Mai, H.D. Le, T.V. Pham, A.T. Pham, Design and performance evaluation of large-scale VLC-based indoor positioning systems under the impact of receiver orientation. IEEE Access 8, 61891–61904 (2020). https://doi.org/10.1109/ACCESS.2020.2984027

    Article  Google Scholar 

  7. N.Q. Pham, V.P. Rachim, W.Y. Chung, High-accuracy VLC-based indoor positioning system using multi-level modulation. Opt. Express 27, 7568–7584 (2019). https://doi.org/10.1364/OE.27.007568

    Article  ADS  Google Scholar 

  8. B. Lin, Q. Guo, C. Lin, X. Tang, Z. Zhou, Z. Ghassemlooy, Experimental demonstration of an indoor positioning system based on artificial neural network. Opt. Eng. 58, 016104 (2019). https://doi.org/10.1117/1.0E.58.1.016104

    Article  ADS  Google Scholar 

  9. B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, Y. Li, Experimental demonstration of an indoor VLC positioning system based on OFDMA. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2672038

    Article  Google Scholar 

  10. Y. Almadani, D. Plets, S. Bastiaens, W. Joseph, M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, Visible light communications for industrial applications—Challenges and potentials. Electronics 9, 2157 (2020). https://doi.org/10.3390/electronics9122157

    Article  Google Scholar 

  11. V.A. Reguera, L. Teixeira, C.H. Barriquello, D.H. Thomas, M.A.D. Costa, Efficient and low complexity rate and dimming control of VLC for industrial IoT applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 3, 1087–1095 (2022). https://doi.org/10.1109/JESTIE.2022.3189570

    Article  Google Scholar 

  12. W. Costa, H. Camporez, M. Segatto, H. Rocha, J. Silva, Towards AI-enhanced VLC Systems. Optical Fiber Communication Conference, Optica Publishing Group, W3I-7, (2022) https://doi.org/10.1364/OFC.2022.W3I.7

  13. B.A. Vijayalakshmi, B. Arunsundar, A. Gopalan et al., An exploration on VLC channel model and characteristics using LEDs in underground mining. J. Opt. 52, 1399–1404 (2023). https://doi.org/10.1007/s12596-022-01054-0

    Article  Google Scholar 

  14. L. Xicong, Z. Ghassemlooy, S. Zvánovec, P.A. Haigh, A 40 Mb/s VLC system reusing an existing large LED panel in an indoor office environment. Sensors 21, 1697 (2021). https://doi.org/10.3390/s21051697

    Article  ADS  Google Scholar 

  15. S. Muñoz, C.A. Iglesias, A. Scheianu, G. Suciu, Semantic nalyser of a VLC-enabled task automation platform for smart offices. Electronics 11, 326 (2022). https://doi.org/10.3390/electronics11030326

    Article  Google Scholar 

  16. X. Li, Z. Ghassemlooy, S. Zvanovec, P. A.Haigh, Experimental Demonstration of a 40 Mb/s VLC System Using a Large Off-the-Shelf LED Panel. IEEE 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, (2020) https://doi.org/10.1109/CSNDSP49049.2020.9249608

  17. A.B. Vijayalakshmi, M. Nesasudha, Data transmission and inoffensive communication by dimmed LEDs using visible light communication technology. J. Opt. 52(1), 154–161 (2023). https://doi.org/10.1007/s12596-022-00901-4

    Article  Google Scholar 

  18. D. Menaka, S. Gauni, C.T. Manimegalai, K. Kalimuthu, Vision of IoUT: advances and future trends in optical wireless communication. J. Opt. 50(3), 439–452 (2021). https://doi.org/10.1007/s12596-021-00722-x

    Article  Google Scholar 

  19. H. Yang, W. Zhong, C. Chen, A. Alphones, Integration of visible light communication and positioning within 5G networks for internet of things. IEEE Netw. 34, 134–140 (2020). https://doi.org/10.1109/MNET.011.1900567

    Article  Google Scholar 

  20. S. Idris, U. Mohammed, J. Sanusi, S. Thomas, Visible light communication: a potential 5G and beyond communication technology. IEEE 15th International Conference on Electronics, Computer and Computation (ICECCO), pp. 1–6, (2019) https://doi.org/10.1109/ICECCO48375.2019.9043201

  21. S. Ariyanti, M. Suryanegara, Visible light communication (VLC) for 6G technology: the potency and research challenges. Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 490-493, (2020) 10.1109/WorldS450073.2020.9210383

  22. M. Katz, I. Ahmed, Opportunities and challenges for visible light communications in 6G. 2nd 6G wireless summit (6G SUMMIT), 1–5, (2020) https://doi.org/10.1109/6GSUMMIT49458.2020.9083805

  23. A. Gupta, X. Fernando, Exploring secure visible light communication in next-generation (6G) internet-of-things. International Wireless Communications and Mobile Computing (IWCMC), pp. 2090–2097, (2021) https://doi.org/10.1109/IWCMC51323.2021.9498740

  24. V. Georlette, V. Moeyaert, S.Bette, N. Point, Visible light communication challenges in the frame of smart cities. IEEE 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4, (2020) https://doi.org/10.1109/ICTON51198.2020.9203463

  25. P. Mishra, G. Singh, 6G-IoT Framework for Sustainable Smart City: Vision and Challenges, Sustainable Smart Cities: Enabling Technologies (Energy Trends and Potential Applications. Springer International Publishing, Cham, 2023), pp.97–117. https://doi.org/10.1007/978-3-031-33354-5_5

    Book  Google Scholar 

  26. A. Sarkar, R. Chakraborty, H. Dutta, LiFi-based energy-efficient traffic sensing and controlling system management for smart city application, in Environmental Informatics: Challenges and Solutions. (Springer Nature Singapore, Singapore, 2022), pp.213–226. https://doi.org/10.1007/978-981-19-2083-7_12

    Chapter  Google Scholar 

  27. V. Georlette, M. Véronique, S. Bette, N. Point, Outdoor Optical Wireless Communication: Potentials, standardization and challenges for Smart Cities. IEEE 29th Wireless and Optical Communications Conference (WOCC), 1–6, (2020) https://doi.org/10.1109/WOCC48579.2020.9114953

  28. M. Meucci, M. Seminara, T. Nawaz, S. Caputo, L. Mucchi, J. Catani, Bidirectional vehicle-to-vehicle communication system based on VLC: outdoor tests and performance analysis. IEEE Trans. Intell. Transp. Syst. 23, 11465–11475 (2021). https://doi.org/10.1109/TITS.2021.3104498

    Article  Google Scholar 

  29. P. Sharda, G.S. Reddy, M.R. Bhatnagar, Z. Ghassemlooy, A comprehensive nalyser of vehicle-to-vehicle based VLC system under practical considerations, an investigation of performance, and diversity property. IEEE Trans. Commun. 70, 3320–3332 (2022). https://doi.org/10.1109/TCOMM.2022.3158325

    Article  Google Scholar 

  30. F.A. Dahri, H.B. Mangrio, A. Baqai, F.A. Umrani, Experimental evaluation of intelligent transport system with VLC vehicle-to-vehicle communication. Wirel. Pers. Commun. 106, 1885–1896 (2019). https://doi.org/10.1007/s11277-018-5727-0

    Article  Google Scholar 

  31. E. Plascencia, O. Shagdar, H. Guan, O. Barrois, L. Chassagne, Optical cdma mac evaluation in vehicle-to-vehicle visible light communications. Electronics 11, 1454 (2022). https://doi.org/10.3390/electronics11091454

    Article  Google Scholar 

  32. R. Ji, S. Wang, Q. Liu, W. Lu, High-speed visible light communications: enabling technologies and state of the art. Appl. Sci. 8, 589 (2018). https://doi.org/10.3390/app8040589

    Article  Google Scholar 

  33. S. Vappangi, V.V. Mani, Concurrent illumination and communication: a survey on visible light communication. Phys. Commun. 33, 90–114 (2019). https://doi.org/10.1016/j.phycom.2018.12.017

    Article  Google Scholar 

  34. S.U. Rehman, S. Ullah, P.H.J. Chong, S. Yongchareon, D. Komosny, Visible light communication: a system perspective—overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153

    Article  ADS  Google Scholar 

  35. G.A. Mapunda, R. Ramogomana, L. Marata, B. Basutli, A.S. Khan, J.M. Chuma, Indoor visible light communication: a tutorial and survey. Wirel. Commun. Mob. Comput. (2020). https://doi.org/10.1155/2020/8881305

    Article  Google Scholar 

  36. A.E. Ibhaze, P.E. Orukpe, F.O. Edeko, High capacity data rate system: review of visible light communications technology. J. Electron. Sci. Technol. 18, 100055 (2020). https://doi.org/10.1016/j.jnlest.2020.100055

    Article  Google Scholar 

  37. M.T. Rahman, A.S.M. Bakibillah, R. Parthiban, M. Bakaul, Review of advanced techniques for multi-gigabit visible light communication. IET Optoelectron. 14, 359–373 (2020). https://doi.org/10.1049/iet-opt.2019.0120

    Article  Google Scholar 

  38. T.C. Yu, W.T. Huang, W.B. Lee, C.W. Chow, S.W. Chang, H.C. Kuo, Visible light communication system technology review: devices, architectures, and applications. Crystals 11, 1098 (2021). https://doi.org/10.3390/cryst11091098

    Article  Google Scholar 

  39. F.A.B. Merdan, S.P. Thiagarajah, K. Dambul, Non-line of sight visible light communications: a technical and application-based survey. Optik 259, 168982 (2022). https://doi.org/10.1016/j.ijleo.2022.168982

    Article  ADS  Google Scholar 

  40. S. Vappangi, V.V. Mani, A survey on the integration of visible light communication with power line communication: conception, applications and research challenges. Optik 266, 169582 (2022). https://doi.org/10.1016/j.ijleo.2022.169582

    Article  ADS  Google Scholar 

  41. L. Kwonhyung, H. Park, J.R. Barry, Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2), 217–219 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945

    Article  Google Scholar 

  42. X. Yang, M. Zhang, M. Kavehrad, M.I.S. Chowdhury, C. Li, R. Chen, J. Wu, X. Tang, Multiband channel characteristics for indoor visible light communications. Opt. Eng. (2014). https://doi.org/10.1109/LCOMM.2011.010411.101945

    Article  Google Scholar 

  43. L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Channel characterization for indoor visible light communications. 3rd International Workshop in Optical Wireless Communications (IWOW), pp. 75–79, IEEE (2014) https://doi.org/10.1109/IWOW.2014.6950780

  44. S. S. Muhammad, Delay profiles for indoor diffused visible light communication. 13th International Conference on Telecommunications (ConTEL), Graz, Austria, pp. 1–5, (2015) https://doi.org/10.1109/ConTEL.2015.7231193

  45. M. Farshad, M. Uysal, Channel nalyser and characterization for visible light communications. IEEE Photonics J. 7(6), 1–6 (2015). https://doi.org/10.1109/JPHOT.2015.2504238

    Article  Google Scholar 

  46. L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems. IET Optoelectron. 10(3), 80–88 (2016). https://doi.org/10.1049/iet-opt.2015.0015

    Article  Google Scholar 

  47. U. Murat, F. Miramirkhani, O. Narmanlioglu, T. Baykas, E. Panayirci, IEEE 802.15. 7r1 reference channel models for visible light communications. IEEE Commun. Magaz. 55(1), 212–217 (2017). https://doi.org/10.1109/MCOM.2017.1600872CM

    Article  Google Scholar 

  48. G. Akash, P. Garg, Statistics of SNR for an indoor VLC system and its applications in system performance. IEEE Commun. Lett. 22(9), 1898–1901 (2018). https://doi.org/10.1109/LCOMM.2018.2859990

    Article  Google Scholar 

  49. M. Farshad, M. Uysal, Channel modelling for indoor visible light communications. Philos. Trans. R. Soc. A 378(2169), 20190187 (2020). https://doi.org/10.1098/rsta.2019.0187

    Article  Google Scholar 

  50. M. Farshad, A path loss model for link budget analysis of indoor visible light communications. Electrica 21(2), 242–249 (2021). https://doi.org/10.5152/electrica.2021.20072

    Article  Google Scholar 

  51. D.O. Marcelo, F.C.B. Tosta, D.E.F. Guillen, P.P. Monteiro, A.A.P. Pohl, Theoretical and experimental analysis of LED lamp for visible light communications. Wirel. Pers. Commun. 125(4), 3461–3477 (2022). https://doi.org/10.1007/s11277-022-09720-z

    Article  Google Scholar 

  52. SN74LS194A datasheet https://www.ti.com/product/SN74LS194A. Accessed 4 June 2023

  53. SN74LS86N datasheet https://www.ti.com/lit/ds/symlink/sn54s86.pdf. Accessed 4 June 2023

  54. SN7400 data sheet https://www.ti.com/product/SN7400/. Accessed 4 June 2023

  55. BPW34 datasheet https://www.vishay.com/docs/81521/bpw34.pdf. Accessed 4 June 2023

  56. TLO81datasheet https://www.ti.com/lit/ds/symlink/tl082.pdf?ts=1646200024816&ref_url=https%253A%252F%252Fwww.google.com%252F. Accessed 4 June 2023

  57. LM319 datasheet https://www.ti.com/lit/ds/symlink/lm319-n.pdf. Accessed 4 June 2023

  58. 7410 datasheet https://www.futurlec.com/74/IC7410.shtml. Accessed 4 June 2023

  59. VAOL-5701WY4 data sheet https://www.mouser.in/datasheet/2/423/VAOL-5701WY4-1064923.pdf. Accessed 16 Sept 2023

  60. VAOL-3HWY4 data-sheet https://www.mouser.in/datasheet/2/423/VAOL-3HWY4-1769824.pdf

  61. C503B-RCN-CX0Y0AA1 data sheet https://www.farnell.com/datasheets/1948037.pdf. Accessed 16 Sept 2023

  62. HLMP CB3A-UVODD data sheet. https://www.farnell.com/datasheets/1918236.pdf. Accessed 16 September 2023

  63. VLHW5100 data sheet https://www.vishay.com/docs/81159/vlhw5100.pdf. Accessed 16 Sept 2023

  64. C503B-GAN-CBOFO792 data sheet https://in.element14.com/cree/c503b-gan-cb0f0791/led-hi-bright-5mm/dp/1855510?st=c503b-gan-cbofo792

  65. M. Mukherjee, K. Noronha, Experimental analysis of received power for OOK-NRZ visible light communication system using off-the-shelf components. Int. J. Inf. Tecnol. 14, 2839–2853 (2022). https://doi.org/10.1007/s41870-022-01079-5

    Article  Google Scholar 

  66. A. Al-Kinani, C. Wang, L. Zhou, W. Zhang, Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutor. 20(3), 1939–1962 (2018). https://doi.org/10.1109/COMST.2018.2838096

    Article  Google Scholar 

  67. Z. Ghassemlooy, W. Popoola, S. Rajbhandari, Optical Wireless Communications-System and Channel Modeling with MATLAB®, 2nd edn. (CRC Press, Taylor and Francis Group, 2018)

    Google Scholar 

  68. NPTEL-NOC-IITM, Optical fiber communication technology, Deepa Ventikesh, Department of Electrical Engineering, Lectures 69–72

  69. Lecture Notes EE800-High-speed interconnects: nalyserg and synchronization, Lecture 15, Shalabh Gupta

  70. T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

Download references

Acknowledgements

All authors are sincerely thankful to Dr. Joseph John, Adjunt Professor at the Indian Institute of Technology-Bombay (IIT-B) for providing constant motivation and technical insights toward realizing the complete VLC circuit.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have endeavored equally toward conceptualization of the paper. Both authors were equally involved in literature exploration, problem formulation and conduction of research. Both authors have scrutinized and consented to the final copy of the manuscript.

Corresponding author

Correspondence to Mrinmoyee Mukherjee.

Ethics declarations

Conflict of interest

Both authors have seen and approved the final version of the manuscript. This experimental work is author’s original work and hasn’t received prior publication and isn’t under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 9, 10, 11 and 12.

Table 9 A1: Coefficients Cij to estimate maximum achievable BER for normalized ILED [0–0.436]
Table 10 A2: Coefficients Cij to estimate maximum achievable BER for normalized ILED [0.44–1]
Table 11 A3: Coefficients Cij to estimate minimum achievable BER for normalized ILED [0–0.436]
Table 12 A4: Coefficients Cij to estimate minimum achievable BER for normalized ILED [0.44–1]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M., Noronha, K. Experimental estimation of quality of service parameters at divergent wavelengths and luminous intensities for indoor visible light communication using OOK-NRZ modulation. J Opt (2023). https://doi.org/10.1007/s12596-023-01568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01568-1

Keywords

Navigation