Skip to main content
Log in

Experimental analysis of received power for OOK-NRZ visible light communication system using off-the-shelf components

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

In recent times, the need for ubiquitous and assisted wireless integration has increased in improvident proportions due to an inconceivable surge in the amount of wirelessly connected devices and nodes. This has led to a multiplication of consumption of data, thereby generating a capacity crunch on the electromagnetic spectrum. In the past few years, Visible Light Communication (VLC) has become immensely popular with researchers around the world due to its enormous freely available bandwidth and the varied applications that it can support. This experimental paper provides a detailed stepwise understanding of system implementation for VLC using off-the-shelf components. Four phosphor-coated ultra-bright white Light Emitting Diodes (LED) and a silicon Positive Intrinsic Negative (PIN) photodetector are used in the experimental study. The system accomplishes a data rate of up to 2 Mb/s over a distance of one meter by employing On–Off Keying (OOK) modulation. The transmitted and received optical powers are documented and analyzed using Microsoft® Excel. The paper has made an effort to list down the need, advantages, procurement websites, and detailed procedures for smooth implementation of the VLC system with minimum financial aid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matheus LEM, Vieira AB, Vieira Luiz FM, Vieira MAM, Gnawali O (2019) Visible light communication concepts, applications and challenges. IEEE Commun Surv Tutor 21(4):3204–3237. https://doi.org/10.1109/COMST.2019.2913348

    Article  Google Scholar 

  2. Pathak PH, Feng XP, Hu MP (2015) Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutor 17(4):2047–2077. https://doi.org/10.1109/COMST.2015.2476474

    Article  Google Scholar 

  3. Karunatilaka D, Zafar F, Kalavally V, Parthiban R (2015) LED based indoor visible light communications: state of the art. IEEE Commun Surv Tutor 17(3):1649–1678. https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  4. Khan LU (2018) Visible light communications: applications, architecture, standardization and research challenges. Sci Direct Digit Commun Netw 3(2):78–88. https://doi.org/10.1016/j.dcan.2016.07.004

    Article  Google Scholar 

  5. Qiu P, Zhu S, Jin Z, Zhou X, Cui X, Tian P (2022) Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs. Opt Lett 47(2):317–320. https://doi.org/10.1364/OL.447540

    Article  Google Scholar 

  6. Xin L, Zixian W, Mutong L, Lei W, Zhongxu L, Changyuan Y et al (2021) Experimental investigation of 16.6 Gbps SDM-WDM visible light communication based on neural network receiver and tri-colour mini LEDs. Opt Lett 46(12):2888–2891

    Article  Google Scholar 

  7. Xie E, Bian R, He X, Islim MS, Chen C, Gu E et al (2020) Over 10 Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photonics Technol Lett 32(9):499–502

  8. Bian R, Tavakkolnia I, Haas H (2019) 15.73 Gbps visible light communication with off the shelf LEDs. J Lightwave Technol 37(10):2418–2424

    Article  Google Scholar 

  9. Abdullah A, Jorge A, Kang CH, Subedi RC, Shen C, Albadri AM et al (2018) High-power blue super-luminescent diode for high CRI lighting and high-speed visible light communication. Opt Express 26(20):26355–26364. https://doi.org/10.1364/OE.26.026355

    Article  Google Scholar 

  10. Viola S, Islim SM, Scott W, Videv S, Haas H et al (2017) 15 Gb/s OFDM based VLC using direct modulation of 450 GaN laser diode. SPIE Digit Libr Proceed. https://doi.org/10.1117/12.2292004

    Article  Google Scholar 

  11. Chen Q, He J, Rui D, Ming C, Fangliu Z, Min D et al (2016) Experimental research on adaptive 128/64QAM DFT-spread IFFT/FFT size efficient OFDM with a high SE in VLLC system. IEEE Photonics J 9(1):1–8. https://doi.org/10.1109/JPHOT.2016.2639786

    Article  Google Scholar 

  12. Burchardt H, Serafimovski N, Tsonev D, Videv S, Haas H (2014) VLC: Beyond point-to-point communication. IEEE Commun Mag 52(7):98–105. https://doi.org/10.1109/MCOM.2014.6852089

    Article  Google Scholar 

  13. Ergul O, Dinc E, Akan OB (2015) Communicate to illuminate: state of art and research challenges for visible light communication. Phys Commun 17:72–85. https://doi.org/10.1016/j.phycom.2015.08.003

    Article  Google Scholar 

  14. Vappangi S, Mani VV (2019) Concurrent illumination and communication: a survey on visible light communication. J Phys Commun 33:90–114. https://doi.org/10.1016/j.phycom.2018.12.017

    Article  Google Scholar 

  15. Obeed MA, Salhab M, Alouini M, Zummo SA (2019) On optimizing VLC networks for downlink multi-user transmission: a survey. IEEE Commun Surv Tutor 21(3):2947–2976. https://doi.org/10.1109/COMST.2019.2906225

    Article  Google Scholar 

  16. Mapunda GA, Ramogomana R, Marata L, Basutli B, Khan AS, Chuma JM (2020) Indoor visible light communication: a tutorial and survey. Wirel Commun Mobile Comput. https://doi.org/10.1155/2020/8881305

    Article  Google Scholar 

  17. Oyewobi SS, Djouani K, Kurien AM (2022) Visible light communications for internet of things: prospects and approaches, challenges. Solut Future Direct Technol 10(1):28. https://doi.org/10.3390/technologies10010028

    Article  Google Scholar 

  18. Saadi M, Ahmad T, Kamran S, Lunchakorn M (2019) Visible light communication—an architectural perspective on the applications and data rate improvement strategies. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.3436

    Article  Google Scholar 

  19. Dahri F, Sajjad A, Ali Muhammad MJ (2018) A review of modulation schemes for visible light communication. Int J Comput Sci Netw Secure 18(2):117–125

    Google Scholar 

  20. Kumar S, Singh P (2019) A comprehensive survey of visible light communication: potential and challenges. Wirel Pers Commun 109:1357–1375. https://doi.org/10.1007/s11277-019-06616-3

    Article  Google Scholar 

  21. Kim S, Jung S (2011) Novel FEC coding scheme for dimmable visible light communication based on the modified Reed–Muller codes. IEEE Photonics Technol Lett 23(20):1514–1516. https://doi.org/10.1109/LPT.2011.2163625

    Article  Google Scholar 

  22. Rajagopal S, Roberts RD, Lim S (2012) IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun Mag 50(3):72–82. https://doi.org/10.1109/MCOM.2012.6163585

    Article  Google Scholar 

  23. Wang Z, Wen-De ZC, Yu J, Francois CCPS, Chen W (2012) Performance of dimming control schemes in visible light communication systems. Opt Express 20(17):18861–18868. https://doi.org/10.1364/OE.20.018861

    Article  Google Scholar 

  24. Zafar F, Karunatilaka D, Parthiban R (2015) Dimming schemes for visible light communication: the state of research. IEEE Wirel Commun 22(2):29–35. https://doi.org/10.1109/MWC.2015.7096282

    Article  Google Scholar 

  25. Che Z, Fang J, Jiang ZL, Yu X, Xi G, Chen Z (2017) A physical-layer secure coding scheme for indoor visible light communication based on polar codes. IEEE Photonics J 10(5):1–13. https://doi.org/10.1109/JPHOT.2018.2869931

    Article  Google Scholar 

  26. Zuo Y, Zhang J (2019) A novel coding based dimming scheme with constant transmission efficiency in VLC systems. Appl Sci 9(4):803. https://doi.org/10.3390/app9040803

    Article  MathSciNet  Google Scholar 

  27. Bawazir SS, Sofotasios PC, Muhaidat S, Al-Hammadi Y, Karagiannidis GK (2018) Multiple access for visible light communications: research challenges and future trends. IEEE Access 6:26167–26174. https://doi.org/10.1109/ACCESS.2018.2832088

    Article  Google Scholar 

  28. Lian J, Gao Y, Wu P, Zhu G, Wang Y (2021) Indoor MIMO VLC systems using optical orthogonal frequency division multiple access. Optics Commun 485:126728. https://doi.org/10.1016/j.optcom.2020.126728

    Article  Google Scholar 

  29. Uday T, Kumar A, Natarajan L (2021) NOMA for multiple access channel and broadcast channel in indoor VLC. IEEE Wirel Commun Lett 10(3):609–613. https://doi.org/10.1109/LWC.2020.3040061

    Article  Google Scholar 

  30. Sadat H, Mohamed A, Mansour A (2022) A survey of NOMA for VLC systems: research challenges and future trends. Sensors 22(4):1335. https://doi.org/10.3390/s22041395

    Article  Google Scholar 

  31. Rahman ABM, Li T, Wang Y (2022) Recent advances in indoor localization via visible lights: a survey. Sensors 20(5):1382. https://doi.org/10.3390/s20051382

    Article  Google Scholar 

  32. Dawood MA, Saleh SS, El-Badawy ESA, Aly MH (2021) A comparative analysis of localization algorithms for visible light communication. Opt Quant Electron 53(2):1–25. https://doi.org/10.1007/s11082-021-02751-z

    Article  Google Scholar 

  33. Obeidat H, Shuaieb W, Obeidat O, Abd-Alhameed R (2021) A review of indoor localization techniques and wireless technologies. Wirel Pers Commun 119(1):289–327. https://doi.org/10.1007/s11277-021-08209-5

    Article  Google Scholar 

  34. Panda B, Beria H, Pradhan B (2021) Deployment of Li-Fi in indoor positioning systems. Int J Inf Technol 13:123–130. https://doi.org/10.1007/s41870-020-00485-x

    Article  Google Scholar 

  35. Nirmalathas A, Song T, Edirisinghe S, Wang K, Lim C, Wong E, Alameh K (2021) Indoor optical wireless access networks-recent progress. J Opt Commun Netw 13(2):A178–A186. https://doi.org/10.1364/JOCN.403485

    Article  Google Scholar 

  36. Rahman MT, Bakibillah ASM, Parthiban R, Bakaul M (2020) Review of advanced techniques for multi-gigabit visible light communication. IET Optoelectron 14(6):359–373. https://doi.org/10.1049/iet-opt.2019.0120

    Article  Google Scholar 

  37. Gaitonde JV, Lohani R (2021) Switching and frequency response of ITO-gated GaAs OPFET models for VLC applications. Int J Inf Technol 13:1005–1017. https://doi.org/10.1007/s41870-021-00665-3

    Article  Google Scholar 

  38. Mishra S, Kumar S, Singh S, Asthana P, Mathur N (2021) Hard link-switching scheme using pre-scanning for indoor VLC networks. Int J Inf Technol 13:733–740. https://doi.org/10.1007/s41870-020-00600-y

    Article  Google Scholar 

  39. Mishra S, Maheshwari R, Grover J, Vaishnavi V (2022) Investigating the performance of vechicular communication system based on visible light communication (VLC). Int J Inf Technol 14:877–885. https://doi.org/10.1007/s41870-021-00834-4

    Article  Google Scholar 

  40. Mir MS, Majlesein B, Guzman BG, Rufo J, Giustiniano D (2021) LED-to-Led based VLC systems: developments and open problems. Proc Workshop Internet Lights. https://doi.org/10.1145/3469264.3469805

    Article  Google Scholar 

  41. Kwon DY, Kim SM (2021) Experimental demonstration of micro LED-to-LED visible light communications. J Korea Inst Electron Commun Sci 16(2): 219–226. https://doi.org/10.13067/JKIECS.2021.16.2.219

  42. Pang G, Kwan T, Chi-Ho C, Liu H (1999) LED traffic light as a communications device. In: Proceedings 199 IEEE/IEEJ/JSAI international conference on intelligent transportation systems (Cat. No. 99TH8383), pp 788–793. https://doi.org/10.1109/ITSC.1999.821161

  43. Jungnickel V et al (2019) Enhance lighting for the internet of things. Global LIFI Congress (GLC). https://doi.org/10.1109/GLC.2019.8864126

    Article  Google Scholar 

  44. Andrew B, Minh HL, Ghassemlooy Z, Bentley E, Botella C (2014) Experimental demonstration of 50 Mbps visible light communication using 4 × 4 MIMO. IEEE Photonics Technol Lett 26(9):945–948. https://doi.org/10.1109/LPT.2014.2310638

    Article  Google Scholar 

  45. Hussian B, Che F, Yue CP, Wu L (2015) Link budget analysis for visible light communication systems. In: IEEE international wireless symposium, pp 1–4. https://doi.org/10.1109/IEEE-IWS.2015.7164628

  46. Bian R, Tavakkolnia I, Haas H (2018) 10.2 Gbps visible light communication with off-the-shelf LEDs. In: European conference on optical communication, pp 1–3. https://doi.org/10.1109/ECOC.2018.8535210

  47. Bian R, Tavakkolnia I, Haas H (2019) 15.73 Gb/s visible light communication with off-the-shelf LEDs. J Lightwave Technol 37(10):2418–2424. https://doi.org/10.1109/JLT.2019.2906464

    Article  Google Scholar 

  48. Jung H, Kim SM (2021) Experimental demonstration of 3 × 3 MIMO LED-to-LED communication using RGB colors. Sensors 21(14):4921. https://doi.org/10.3390/s21144921

    Article  Google Scholar 

  49. Fortes M, González O (2021) Testbed for experimental characterization of indoor visible light communication channels. Electronics 10(11):1365. https://doi.org/10.3390/electronics10111365

    Article  Google Scholar 

  50. Yu M, Chao W, Jiawei R, Yijun Z (2021) Evaluation and experimental comparison of different photodetector receivers for visible light communication systems under typical scenarios. Opt Eng 60(9):096101. https://doi.org/10.1117/1.OE.60.9.096101

    Article  Google Scholar 

  51. Lei W, Zixian W, Chien-Ju C, Lai W, Fu HY, Zhang L et al (2021) 1.3 GHz E–O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photon 9(5):792–802. https://doi.org/10.1364/PRJ.411863

    Article  Google Scholar 

  52. Behzad R (2003) Basic concepts. Design of Integrated circuits for optical communication, 1st edn. Mc Graw Hill, New York, pp 8–76

    Google Scholar 

  53. Datasheet of universal shift register TTL SN74LS194AN. https://www.ti.com/lit/ds/symlink/sn74ls194a.pdf?ts=1650442373349&ref_url=https%253A%252F%252Fwww.google.com%252F. Accessed 20 April 2022

  54. Datasheet of SN74LS86N Quad 2-input Exclusive-OR gate. https://www.ti.com/lit/ds/symlink/sn54s86.pdf?ts=1650455504767&ref_url=https%253A%252F%252Fwww.google.com%252F. Accessed 20 April 2022

  55. Datasheet of SN7400 NAND gate. https://www.ti.com/product/SN7400. Accessed 20 April 2022

  56. Datasheet VLHW5100 LED. https://www.vishay.com/docs/81159/vlhw5100.pdf. Accessed 20 April 2022

  57. Different types of LED from Vishay Semiconductors. https://www.vishay.com/leds/. Accessed 20 April 2022

  58. Datasheet of BPW46. https://www.vishay.com/docs/81524/bpw46.pdf. Accessed 4 June 2022

  59. Datasheet of BPW34. https://www.vishay.com/docs/81521/bpw34.pdf. Accessed 4 June 2022

  60. Keiser G (2013) Optical Fiber Communications, 5th edn. McGraw Hill Education (India), New Delhi

  61. Different photodetectors from Vishay. https://www.vishay.com/photo-detectors/pin-photo. Accessed 9 June 2022

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors have put up indistinguishable efforts in exhaustive study of literature, design formation for experimental implementation and formatting of paper. Exploration of right, review papers, tabulation of relevant data, creating illustrations and noting the exhaustive list of references were done equally by both authors. Both authors have scrutinized and consented to the final copy of manuscript.

Corresponding author

Correspondence to Mrinmoyee Mukherjee.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M., Noronha, K. Experimental analysis of received power for OOK-NRZ visible light communication system using off-the-shelf components. Int. j. inf. tecnol. 14, 2839–2853 (2022). https://doi.org/10.1007/s41870-022-01079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-01079-5

Keywords

Navigation