Skip to main content
Log in

Optical solitons for dispersive concatenation model with Kerr law nonlinearity by the complete discriminant method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper is about the retrieval of optical solitons for the dispersive concatenation model with Kerr law nonlinearity by the complete discriminant method. The variety of cases depending on the sign of the discriminant from the quadrature leads to the emergence of dark and singular solitons, cnoidal waves, straddled cnoidal waves, and rational waves. The parameter constraints are also included to guarantee the existence of the respective solitons and waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Ankiewicz, N. Akhmediev, Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev, Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)

    Article  ADS  Google Scholar 

  3. A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 91, 032922 (2014)

    Article  ADS  Google Scholar 

  4. A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the dispersive concatenation model with nonlinear chromatic disperesion by Lie symmetry. To appear in Contemp. Math.

  7. A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and power-law of self phase modulation by Lie symmetry. To appear in J. Opt.

  8. A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the concatenation model with Kerr law nonlinearity and nonlinear chromatic dispersion by Lie symmetry. To appear J. Opt.

  9. A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Imploicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and in absence of self–phase modulation by Lie symmetry. To appear in J. Opt.

  10. A.H. Arnous, A. Biswas, A.H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, S. Moldovanu, A.A. Alghamdi, Optical solitons and conservation laws for the concatenation model with spatio–temporal dispersion (Internet traffic regulation). J. Eur. Opt. Soc. Rapid Publ. 19(2), Article 35 (2023)

  11. A.H. Arnous, A. Biswas, Y. Yildirim, L. Moraru, C. Iticescu, L.P. Georgescu, A. Asiri, Optical solitons and complexitons for the concatenation model in birefringent fibers. Ukrainian J. Phys. Opt. 24(4), 04060–04086 (2023)

    Article  ADS  Google Scholar 

  12. A.H. Arnous, A. Biswas, A.H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, S. Moldovanu, A.A. Alghamdi, Optical solitons and conservation laws for the concatenation model: power-law nonlinearity. To appear in Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2023.102381

  13. A. Biswas, J. Vega–Guzman, A.H. Kara, S. Khan, H. Triki, O. Gonzalez–Gaxiola, L. Moraru, P.L. Georgescu, Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe 9(1), Article 15 (2023)

  14. A. Biswas, J. Vega-Guzman, Y. Yildirim, L. Moraru, C. Iticescu, A.A. Alghamdi, Optical solitons for the concatenation model with differential group delay: undetermined coefficients. Mathematics 11(9), 2012 (2023)

    Article  Google Scholar 

  15. A. Biswas, J.M. Vega-Guzman, Y. Yildirim, S.P. Moshokoa, M. Aphane, A.A. Alghamdi, Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian J. Phys. Opt. 24(3), 185–192 (2023)

    Article  Google Scholar 

  16. O. González-Gaxiola, A. Biswas, J.R.D. Chavez, A. Asiri, Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukrainian J. Phys. Opt. 24(3), 222–234 (2023)

    Article  ADS  Google Scholar 

  17. R. Shohib, M.E.M. Alngar, A. Biswas, Y. Yildirim, H. Triki, L. Moraru, C. Iticescu, P.L. Georgescu, A. Asiri, Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian J. Phys. Opt. 24(3), 248–261 (2023)

    Article  ADS  Google Scholar 

  18. M.-Y. Wang, A. Biswas, Y. Yildirim, L. Moraru, S. Moldovanu, H.M. Alshehri, Optical solitons for a concatenation model by trial equation approach. Electronics 12(1), Article 19 (2023)

  19. Y. Yildirim, A. Biswas, L. Moraru, A.A. Alghamdi. Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics 11(7), Article 1709 (2023)

  20. E.M.E. Zayed, K.A. Gepreel, M. El-Horbaty, A. Biswas, Y. Yildirim, H. Triki, A. Asiri, Optical solitons for the dispersive concatenation model. Contemp. Math. 4(3), 592–611 (2023)

    Article  Google Scholar 

  21. A.J.M. Jawad, M.J. Abu-AlShaeer, Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 1(1), 1–8 (2023)

    Article  Google Scholar 

  22. S. Wang, Novel soliton solutions of CNLSEs with Hirota bilinear method. J. Opt. 52, 1602–1607 (2023)

    Article  Google Scholar 

  23. B. Kopçasız, E. Yasar, The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. J. Opt. 52, 1513–1527 (2023)

    Article  Google Scholar 

  24. L. Tang, Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J. Opt. 52, 1388–1398 (2023)

    Article  Google Scholar 

  25. T.N. Thi, L.C. Van, Supercontinuum generation based on suspended core fiber infiltrated with butanol. To appear in J. Opt. https://doi.org/10.1007/s12596-023-01323-6

  26. Z. Li, E. Zhu, Optical soliton solutions of stochastic Schrödinger–Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. To appear in J. Opt. https://doi.org/10.1007/s12596-023-01287-7

  27. T. Han, Z. Li, C. Li, L. Zhao, Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media. J. Opt. 52, 831–844 (2023)

    Article  Google Scholar 

  28. S. Nandy, V. Lakshminarayanan, Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. J. Opt. 44, 397–404 (2015)

    Article  Google Scholar 

  29. W. Chen, M. Shen, Q. Kong, Q. Wang, The interaction of dark solitons with competing nonlocal cubic nonlinearities. J. Opt. 44, 271–280 (2015)

    Article  Google Scholar 

  30. S.-L. Xu, N. Petrovic, M.R. Belic, Two-dimensional dark solitons in diffusive nonlocal nonlinear media. J. Opt. 44, 172–177 (2015)

    Article  Google Scholar 

  31. E.M. Zayed, R.M. Shohib, A.G. Al-Nowehy, On solving the (3 + 1)-dimensional NLEQZK equation and the (3 + 1)-dimensional NLmZK equation using the extended simplest equation method. Comput. Math. Appl. 78(10), 3390–3407 (2019)

    Article  MathSciNet  Google Scholar 

  32. E.M. Zayed, R.M. Shohib, A.G. Al-Nowehy, Solitons and other solutions for higher-order NLS equation and quantum ZK equation using the extended simplest equation method. Comput. Math. Appl. 76(9), 2286–2303 (2018)

    Article  MathSciNet  Google Scholar 

  33. E.M. Zayed, M.E. Alngar, R.M. Shohib, Cubic-quartic embedded solitons with \(\chi (2)\) and \(\chi (3)\) nonlinear susceptibilities having multiplicative white noise via Itô calculus. Chaos Solitons Fract. 168, 113186 (2023)

    Article  Google Scholar 

  34. E.M. Zayed, M.E. Alngar, R.M. Shohib, Dispersive optical solitons to Stochastic resonant NLSE with both spatio-temporal and inter-modal dispersions having multiplicative white noise. Mathematics 10(17), 3197 (2022)

    Article  Google Scholar 

  35. S.A. AlQahtani, R.M. Shohib, M.E. Alngar, A.M. Alawwad, High-stochastic solitons for the eighth-order NLSE through Itô calculus and STD with higher polynomial nonlinearity and multiplicative white noise. Opt. Quant. Electron. 55(14), 1227 (2023)

    Article  Google Scholar 

  36. S.A. AlQahtani, M.S. Al-Rakhami, R.M.A. Shohib, M.E.M. Alngar, P. Pathak, Dispersive optical solitons with Schrödinger–Hirota equation using the \(P^6\)-model expansion approach. Opt. Quant. Electron. 55, 701 (2023). https://doi.org/10.1007/s11082-023-04960-0

    Article  Google Scholar 

  37. E.M.E. Zayed, R.M.A. Shohib, M.E.M. Alngar, Cubic-quartic optical solitons in Bragg gratings fibers for NLSE having parabolic non-local law nonlinearity using two integration schemes. Opt. Quant. Electron. 53, 452 (2021). https://doi.org/10.1007/s11082-021-03145-x

    Article  Google Scholar 

  38. S.A. AlQahtani, M.E. Alngar, R.M. Shohib, P. Pathak, Highly dispersive embedded solitons with quadratic \(\chi (2)\) and \(\chi (3)\) non-linear susceptibilities having multiplicative white noise via Itô calculus. Chaos Solitons Fract. 171, 113498 (2023)

    Article  Google Scholar 

  39. E.M. Zayed, M.E. Alngar, Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Methods Appl. Sci. 44(1), 315–324 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.R. Adem, T.J. Podile, B. Muatjetjeja, A generalized (3 + 1)-dimensional nonlinear wave equation in liquid with gas bubbles: symmetry reductions; exact solutions; conservation laws. Int. J. Appl. Comput. Math. 9(5), 82 (2023)

    Article  MathSciNet  Google Scholar 

  41. I. Humbu, B. Muatjetjeja, T.G. Motsumi, A.R. Adem, Solitary waves solutions and local conserved vectors for extended quantum Zakharov–Kuznetsov equation. Eur. Phys. J. Plus 138(9), 873 (2023)

    Article  Google Scholar 

  42. M.C. Sebogodi, B. Muatjetjeja, A.R. Adem, Exact solutions and conservation laws of a (2+ 1)-dimensional combined potential Kadomtsev–Petviashvili-B-type Kadomtsev–Petviashvili equation. Int. J. Theor. Phys. 62(8), 165 (2023)

    Article  MathSciNet  Google Scholar 

  43. I. Humbu, B. Muatjetjeja, T.G. Motsumi, A.R. Adem, Periodic solutions and symmetry reductions of a generalized Chaffee–Infante equation. Partial Differ. Equ. Appl. Math. 7, 100497 (2023)

    Article  Google Scholar 

  44. A.R. Adem, T.S. Moretlo, B. Muatjetjeja, A generalized dispersive water waves system: conservation laws; symmetry reduction; travelling wave solutions; symbolic computation. Partial Differ. Equ. Appl. Math. 7, 100465 (2023)

    Article  Google Scholar 

  45. A.R. Adem, B. Muatjetjeja, T.S. Moretlo, An extended (2 + 1)-dimensional coupled burgers system in fluid mechanics: symmetry reductions; Kudryashov method; conservation laws. Int. J. Theor. Phys. 62(2), 38 (2023)

    Article  MathSciNet  Google Scholar 

  46. A.R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation. Appl. Math. Lett. 48, 109–117 (2015)

    Article  MathSciNet  Google Scholar 

  47. A.R. Adem, The generalized (1 + 1)-dimensional and (2 + 1)-dimensional Ito equations: multiple exp-function algorithm and multiple wave solutions. Comput. Math. Appl. 71(6), 1248–1258 (2016)

    Article  MathSciNet  Google Scholar 

  48. A.R. Adem, X. Lü, Travelling wave solutions of a two-dimensional generalized Sawada–Kotera equation. Nonlinear Dyn. 84, 915–922 (2016)

    Article  MathSciNet  Google Scholar 

  49. A.R. Adem, Solitary and periodic wave solutions of the Majda–Biello system. Mod. Phys. Lett. B 30(15), 1650237 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. A.R. Adem, A (2 + 1)-dimensional Korteweg–de Vries type equation in water waves: lie symmetry analysis; multiple exp-function method; conservation laws. Int. J. Mod. Phys. B 30(28–29), 1640001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MY., Biswas, A., Yıldırım, Y. et al. Optical solitons for dispersive concatenation model with Kerr law nonlinearity by the complete discriminant method. J Opt (2023). https://doi.org/10.1007/s12596-023-01550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01550-x

Keywords

OCIS Codes

Navigation