Skip to main content
Log in

Cross focusing of q-Gaussian laser beams in cubic–quintic nonlinear media and conversion of circular laser beam into elliptic laser beam

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Variational theory has been used to find the solution of nonlinear Schrodinger wave equation (NSWE) in a semi analytical way with the goal to model the dynamics of two coaxial asymmetric q-Gaussian laser beams in nonlinear optical media. The nonlinearity in the refractive index of the medium has been modeled by cubic-quintic model. Due to the intensity dependence of refractive index, the two laser beams get coupled with each other and thus influence the propagation characteristics of each other. Emphases are put on the dynamical variations of beam widths and longitudinal phases of the laser beams with distance of propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated Optical Radiation in Ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. J.A. Giordmaine, Nonlinear optics. Phys. Today 22, 38 (1969)

    Article  ADS  Google Scholar 

  3. M. Ebrahimzadeh, Parametric light generation. Phil. Trans. R. Soc. A 361, 2731 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Gupta, S. Kumar, Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Kepler’s central force problem. Pramana - J Phys. 95, 53 (2021)

    Article  ADS  Google Scholar 

  5. N. Gupta, Self focusing and axial phase modulation of laser beams carrying orbital angular momentum in collisionless plasmas. Opt. Quant. Electron. 53, 608 (2021)

    Article  Google Scholar 

  6. N. Gupta, S. Kumar, Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chin. Phys. B 29, 114210 (2020)

    Article  ADS  Google Scholar 

  7. N. Gupta, S. Kumar, Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: efect of ponderomotive force. Opt. Quant. Electron. 53, 253 (2021)

    Article  Google Scholar 

  8. N. Gupta, Multi Gaussian breather solitons in diffraction managed nonlinear optical media. Nonl. Opt. Quant. Opt. 55, 309 (2022)

    Google Scholar 

  9. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1965)

    Article  ADS  Google Scholar 

  10. N. Gupta, R. Johari, S.B. Bhardwaj, Generation of superthermal electrons by self-focused Cosh Gaussian laser beams in inertial confinement fusion plasma. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00948-3

    Article  Google Scholar 

  11. S. Jana, S. Konar, Induced focusing of two laser beams in cubic quintic nonlinear media. Phys. Scr. 70, 354 (2004)

    Article  ADS  MATH  Google Scholar 

  12. N. Gupta, S. Kumar, Generation of second harmonics of relativistically self-focused \(q\)-Gaussian laser beams in underdense plasma with axial density ramp. Opt. Quant. Electron. 53, 193 (2021)

    Article  Google Scholar 

  13. N. Gupta, S.B. Bhardwaj, Relativistic efects on electron acceleration by elliptical \(q\)-gaussian laser beam driven electron plasma wave. Opt. Quant. Electron. 53, 700 (2021)

    Article  Google Scholar 

  14. N. Gupta, R. Johari, S.B. Bhardwaj, R. Rani, N. Patial, Self-compression of elliptical q-Gaussian laser pulse in plasmas with axial density ramp. J. Opt. 52, 175 (2023)

    Article  Google Scholar 

  15. M. Yadav, D.N. Gupta, S.C. Sharma, Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas. 27, 093106 (2020)

    Article  Google Scholar 

  16. S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, Cross focusing of two coaxial cosh-Gaussian laser beams in a parabolic medium. Optik 122, 1869 (2011)

    Article  ADS  Google Scholar 

  17. B.D. Vhanmore, S.D. Patil, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, M.V. Takale, D.N. Gupta, Effect of q-parameter on relativistic self-focusing of q-Gaussian laser beam in plasma. Optik 158, 574 (2018)

    Article  ADS  Google Scholar 

  18. K.Y. Khandale, P.T. Takale, T.U. Urunkar, S.S. Patil, P.P. Nikam, M.B. Mane, V.S. Pawar, A.T. Valkunde, S.D. Patil, M.V. Takale, On the Exploration of q Parameter in Propagation Dynamics of q-Gaussian Laser Beam in Underdense Collisional Plasma. Bulgarian J. Phys. 49, 375 (2022)

    Google Scholar 

  19. A. Sharma, I. Kourakis, Spatial evolution of a \(q\)-Gaussian laser beam in relativistic plasma. Laser and Part. Beams 28, 409 (2010)

    Article  Google Scholar 

  20. L. Wang, X. Hong, J. Sun, R. Tang, Y. Yang, W. Zhou, J. Tian, W. Duan, Effects of relativistic and channel focusing on \(q\)-Gaussian laser beam propagating in a preformed parabolic plasma channel. Phys. Lett. A 381, 2065 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Jana, A. Singh, K. Porsezian, T. Mithun, Self-trapped elliptical super-Gaussian beam in cubic-quintic media. Opt. Commun. 332, 311 (2014)

    Article  ADS  Google Scholar 

  22. S. Konar, S. Jana, M. Mishra, Induced focusing and all optical switching in cubic quintic nonlinear media. Opt. Commun. 255, 114 (2005)

    Article  ADS  Google Scholar 

  23. D. Anderson, M. Bonnedal, M. Lisak, "Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  Google Scholar 

  24. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., AK, A., Johari, R. et al. Cross focusing of q-Gaussian laser beams in cubic–quintic nonlinear media and conversion of circular laser beam into elliptic laser beam. J Opt (2023). https://doi.org/10.1007/s12596-023-01260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01260-4

Keywords

Navigation