Skip to main content
Log in

Three input NAND gate using quantum dot semiconductor optical amplifier

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The work describes design and simulations of a three input NAND gate using quantum dot semiconductor optical amplifiers for the first time as far as author’s knowledge goes. Both cross gain modulation and cross phase modulations implement the NAND operation in a modified manner. Amplitude modulation, extinction ratio, relative eye opening, contrast ratio, etc. are optimized in terms of control power and their dependence on amplified spontaneous noise has been investigated for three different unsaturated gains of the QDSOA. These parameters show efficient performance for unsaturated gains 20 and 30 dB. REO value more than 99% and Q value more than 16 dB ensure practical feasibility of the logic gate proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. K. Maini,Digital Electronics: Principles, Devices and Applications, 2007 ISBN: 978–0–470–03214–5John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

  2. S.H. Kim et al., All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron. Lett. 41(18), 1027–1028 (2005)

    Article  ADS  Google Scholar 

  3. A. Kotb, C. Guo, 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J. Mod. Opt. 67(12), 1138–1144 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. X. Ye, P. Ye, M. Zhang, All-optical NAND gate using integrated SOA-based Mach-Zehnder interferometer. Opt. Fiber Technol. 12(4), 312–316 (2006)

    Article  ADS  Google Scholar 

  5. E. Dimitriadou, K.E. Zoiros, On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Laser Technol. 44(6), 1971–1981 (2012)

    Article  ADS  Google Scholar 

  6. S. Serajmohammadi, H. Absalan, All optical NAND gate based on nonlinear photonic crystal ring resonator. Inf. Process. Agric. 3(2), 119–123 (2016)

    Google Scholar 

  7. A. Singh et al., Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik 182, 524–528 (2019)

    Article  ADS  Google Scholar 

  8. B. Nakarmi et al., Demonstration of all-optical NAND gate using single-mode Fabry-Pérot laser diode. IEEE Photonics Technol. Lett. 23(4), 236–238 (2010)

    Article  ADS  Google Scholar 

  9. R.K. Hassan, M. Akhlaghi, Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quant. Electronics 47, 3637–3645 (2015)

    Article  Google Scholar 

  10. I. Charles et al., Enhanced all-optical Y-shaped plasmonic OR, NOR and NAND gate models, analyses, and simulation for high speed computations. Opt. Quant. Electron. 54(6), 330 (2022)

    Article  Google Scholar 

  11. Y. Luo, D. Mengu, A. Ozcan, Cascadable all-optical NAND gates using diffractive networks. Sci. Rep. 12, 7121 (2022). https://doi.org/10.1038/s41598-022-11331-4

    Article  ADS  Google Scholar 

  12. E. Dimitriadou, K.E. Zoiros, On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J. Opt. 14(10), 105401 (2012)

    Article  ADS  Google Scholar 

  13. A. Kotb, NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer. Optoelectron. Lett. 9(2), 89–92 (2013)

    Article  ADS  Google Scholar 

  14. A. Kotb, K.E. Zoiros, 1 Tb/s high quality factor NAND gate using quantum-dot semiconductor optical amplifiers in Mach-Zehnder interferometer. J. Comput. Electron. 13(2), 555–561 (2014)

    Article  Google Scholar 

  15. S.D. Subhasis Roy, K. Mukherjee. Alternative method of implementation of all-optical NOR and NAND gates using quantum-dot semiconductor optical amplifiers in non-interferometer structure. J. Opt. Commun. (2022)

  16. D. Siddhartha, K. Mukherjee, S. Roy, Tera-bit per second quantum dot semiconductor optical amplifier-based all optical NOT and NAND gates. Adv. Terahertz Technol. Appl. 11, 73–94 (2021)

    Google Scholar 

  17. M. Shu-Chao et al., Research of all-optical NAND gates based on quantum dot semiconductor optical amplifiers cascaded connection XGM and XPM. Optik 202, 163551 (2020)

    Article  ADS  Google Scholar 

  18. A. Kotb, K.E. Zoiros, C. Guo, 2 Tb/s all-optical gates based on two-photon absorption in quantum dot semiconductor optical amplifiers. Opt. Laser Technol. 112, 442–451 (2019)

    Article  ADS  Google Scholar 

  19. A. Kotb, K.E. Zoiros, W. Li, Numerical demonstration of NAND and XNOR Boolean functions using quantum-dot semiconductor optical amplifiers-based turbo-switched Mach-Zehnder interferometers and delayed interferometer at 1 Tb/s. Pramana 96(2), 85 (2022)

    Article  ADS  Google Scholar 

  20. K. Mukherjee, Non-MZI all-optical XOR gate using cross-gain modulation in quantum dot semiconductor optical amplifier at 2 Tb/s without filter. J. Opt. 50, 535–541 (2021). https://doi.org/10.1007/s12596-021-00723-w

    Article  Google Scholar 

  21. H. Han et al. High efficiency 160 Gb/s all-optical wavelength converter based on terahertz optical asymmetric demultiplexer with quantum dot semiconductor optical amplifier. Optoelectron. Mater. Devices II. 6782. SPIE (2007)

  22. K. Mukherjee. Tera-hertz Optical Asymmetric Demultiplexer (TOAD) using quantum dot semiconductor optical amplifier. In: Proceedings of EMNSD (2020), Central Institute of Technology, Kokrajhar, Assam, India 15–16 Dec, 2020 Central Institute of Technology Kokrajhar, 31 (2020)

  23. K. Mukherjee, S. Dutta, S. Roy et al., All-optical digital to analog converter using tera hertz optical asymmetric demultiplexer based on quantum dot semiconductor optical amplifier. Opt. Quant. Electron. 53, 242 (2021). https://doi.org/10.1007/s11082-021-02900-4

    Article  Google Scholar 

  24. K. Mukherjee, Artificial neuron based on tera hertz optical asymmetric demultiplexer using quantum dot semiconductor optical amplifier. Adv. Terahertz Technol. Appl., pp. 293–306 (2021)

  25. K. Mukherjee, All optical XOR gate using quantum dot semiconductor optical amplifier based terahertz optical asymmetric demultiplexer (TOAD). Generation, Detection and Processing of Terahertz Signals., pp. 87–95 (2022)

  26. S. Dutta, K. Mukherjee, S. Roy. Analysis of All-Optical XNOR Gate Using Quantum Dot Semiconductor Optical Amplifier (QDSOA). In: Proceedings of the 3rd International Conference on Communication, Devices and Computing: ICCDC 2021. Singapore: Springer Singapore (2022)

  27. R. Maddala, S. Swarnakar, M. Rajan Babu, P. Mary Swetha, Y.P. Rangaiah, S. Vamshi Krishna, S. Kumar, Optimization of an all-optical three-input universal logic gate with an enhanced contrast ratio by exploiting a T-shaped photonic crystal waveguide. Appl. Opt. 61, 8162–8171 (2022)

    Article  ADS  Google Scholar 

  28. K. Mukherjee, A. Raja. Three input NAND gate using semiconductor optical amplifier. In: 2020 IEEE VLSI Device Circuit and System (VLSI DCS), pp. 142–145. IEEE (2020)

  29. A. Raja, K. Mukherjee, J.N. Roy. Polarization rotation-based all-optical AND gate using single semiconductor optical amplifier and implementation of a majority gate. J. Opt. Commun., pp. 000010151520200303 (2021). https://doi.org/10.1515/joc-2020-0303

  30. K. Mallick, P. Mandal, B. Dutta, B. Kuiri, S. Santra, R. Mukherjee, A.S. Patra, Bidirectional OFDM-MMWOF transport system based on mixed QAM modulation format using dual mode colorless laser diode and RSOA for next generation 5-G based network. Opt. Fiber Technol. 64, 102562 (2021)

    Article  Google Scholar 

  31. K. Mallick, R. Mukherjee, B. Das, G.C. Mandal, A.S. Patra, Bidirectional hybrid OFDM based Wireless-over-fiber transport system using reflective semiconductor amplifier and polarization multiplexing technique. AEU Int. J. Electronics Commun. 96, 260–266 (2018)

    Article  Google Scholar 

  32. G.C. Mandal, R. Mukherjee, B.B. Das, A.S.A. Patra, A full-duplex WDM hybrid fiber-wired/fiber-wireless/fiber-VLC/fiber-IVLC transmission system based on a self-injection locked quantum dash laser and a RSOA. Opt. Commun. 427, 202–208 (2018)

    Article  ADS  Google Scholar 

  33. G.C. Mandal, R. Mukherjee, B. Das, A.S. Patra, Next-generation bidirectional triple-play services using RSOA based WDM radio on free-space optics PON. Opt. Commun. 411, 138–142 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

No funding is received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Ethics declarations

Conflict of interest

The author declares no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K. Three input NAND gate using quantum dot semiconductor optical amplifier. J Opt (2023). https://doi.org/10.1007/s12596-023-01501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01501-6

Keywords

Navigation