Skip to main content
Log in

All-Optical digital to analog converter using Tera Hertz Optical Asymmetric Demultiplexer based on quantum dot semiconductor optical amplifier

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper describes design and analysis of Tera Hertz Optical Asymmetric Demultiplexer (TOAD) switch using quantum dot semiconductor optical amplifier (QDSOA) and all- optical digital to analog converter (DAC). The QDSOA based TOAD or QDSTOAD and the DAC performance optimization for control power variations shows that 1.5 mW pump or control power gives the optimized performance as far as the extinction ratio is concerned for the TOAD. At the same power absolute error (ε) and dynamic range for DAC also shows maximum. The present paper investigates relative output, absolute error and dynamic range for the performance analysis of the DAC. An absolute error as low as 0.25% and dynamic range (11.765 dB) very close to the ideal value (11.761 dB) ensures effectiveness of these devices. These devices show immunity to the amplified spontaneous emission noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

No data and material.

Code availability

Not applicable.

References

  • Chattopadhyay, T.: All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit. Opt. Fiber Technol. 17, 558–567 (2011)

    Article  ADS  Google Scholar 

  • Chattopadhyay, T.: Terahertz optical asymmetric demultiplexer (TOAD) based half-adder and using it to design all-optical flip-flop. Optik 123(21), 1961–1964 (2012)

    Article  ADS  Google Scholar 

  • Chattopadhyay, T., Roy, J.N.: Design of polarization encoded all-optical 4-valued MAX logic gate and its applications. Opt. Commun. 300, 119–128 (2013). https://doi.org/10.1016/j.optcom.2013.02.025

    Article  ADS  Google Scholar 

  • Das, A.S., Kuiri, P.K. et al.: A RSOA based full-duplex 80 channel CATV signal with 1.25 Gbps data-stream transmission system using optical carrier suppression and injection-locked FPLDs. In: SPIE Proceedings Vol. 9654, 96541T-1 (2015). doi: https://doi.org/10.1117/12.2182645

  • Das, R., Bhattacharjee, A., Biswal, L., Bandyopadhyay, C., Rahaman, H.: All optical implementation of universal shift-register using terahertz optical asymmetric de-multiplexer based Optical Devices. In: 2018 International Symposium on Devices, Circuits and Systems (ISDCS) (2018). doi:https://doi.org/10.1109/isdcs.2018.8379659

  • Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifier, 2nd ed, World Scientific, Singapore (2013)

  • Flayih, A.H., Al-Khursan, A.H.: Theory of four wave mixing in quantum dot semiconductor optical amplifiers. J. Phys. D: Appl. Phys. 46, 445102 (2013)

    Article  ADS  Google Scholar 

  • Gandhi, S.I., Sridarshini, T.: Design of photonic crystal based optical digital to analog converters. Laser Phys. 29, 1–6 (2019)

    Article  ADS  Google Scholar 

  • Gayen, D.K., Chattopadhyay, T., Das, M.K., Roy, J.N., Pal, R.K.: All-optical binary to gray code and gray to binary code conversion scheme with the help of semiconductor optical amplifier-assisted sagnac switch. IET Circuits Devices Syst. 5, 123–131 (2011). https://doi.org/10.1049/iet-cds.2010.0069

    Article  Google Scholar 

  • Gayen, D.K., Bhattachryya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder Interferometer. J. Lightw. Technol. 30(21), 3387–3393 (2012). https://doi.org/10.1109/JLT.2012.2215579

    Article  ADS  Google Scholar 

  • Gayen, D.K., Roy, J.N., Pal, R.K.: All-optical carry lookahead adder with the help of terahertz optical asymmetric demultiplexer. Optik 123(1), 40–45 (2012)

    Article  ADS  Google Scholar 

  • Glesk, I., Sokoloff, J.P., Prucnal, P.R.: Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s. Electron. Lett. 30(4), 339–341 (1994). https://doi.org/10.1049/el:19940253

    Article  ADS  Google Scholar 

  • Goutham, V., Goel, A., Pandey, G.: Design of optical switching devices using all-optical half adder based on terahertz optical asymmetric de-multiplexer. Opt Quant Electron 48, 1–13 (2016). https://doi.org/10.1007/s11082-016-0615-x

    Article  Google Scholar 

  • Hajjiah, A., Alqallaf, A., Cherri, A.: Designs of all-optical higher-order signed-digit adders using polarization-encoded based terahertz-optical-asymmetric-demultiplexer (TOAD). Opt. Photon. J. 4, 113–128 (2014). https://doi.org/10.4236/opj.2014.46012

    Article  ADS  Google Scholar 

  • Hamilton, S.A., Robinson, B.S., Murphy, T.E., Savage, S.J., Ippen, E.P.: 100 Gb/s optical time-division multiplexed networks. J. Lightwave Technol. 20, 2086–2100 (2002)

  • Izadyar, S.M., Razaghi, M., Hassanzadeh, A.: Quantum dot semiconductor optical amplifier: investigation of amplified spontaneous emission and noise figure in the presence of second excited state. Opt Quant Electron 50, 1–13 (2018). https://doi.org/10.1007/s11082-017-1265-3

    Article  Google Scholar 

  • Kaur, K., Bhatia, K.S.: Optical time division multiplexing using terahertz optical asymmetric demultiplexer. J. Opt. Commun. 36(4), 297–301 (2015). https://doi.org/10.1515/joc-2014-0087

    Article  Google Scholar 

  • Komatsu, K., Hosoya, G., Yashima, H.: All Optical NOR gate using a single quantum dot SOA assisted an optical filter. Opt Quant Electron 50(131), 1–18 (2018)

    Google Scholar 

  • Maity, G.K., Mandal, A.K., Manik, N.B., et al.: All-optical TOAD based new binary sequence generator. Opt Quant Electron 48, 1–15 (2016). https://doi.org/10.1007/s11082-016-0604-0

    Article  Google Scholar 

  • Maji, K., Mukherjee, K.: Analysis of soliton based XOR gate using dual-controlterahertz optical asymmetric demultiplexer (DCTOAD). J. Opt. Photonics Technol. 4(4), 1–5 (2019)

    Google Scholar 

  • Maji, K., Mukherjee, K.: Performance analysis of optical logic XOR gate using dual-control Tera Hertz Optical Asymmetric Demultiplexer (DCTOAD). In: 2019 Devices for Integrated Circuit (DevIC), Kalyani, India, 2019, pp. 58–60, doi:https://doi.org/10.1109/DEVIC.2019.8783496

  • Maji, K., Mukherjee, K., Raja, A.: Frequency encoded all optical universal logic gate using tera hertz optical demultiplexer. Int. J. Opt. Photonics 4(3), 1–7 (2018)

    Google Scholar 

  • Maji, K., Mukherjee, K., Raja, A.: An alternative method for implementation of frequency-encoded logic gates using a terahertz optical asymmetric demultiplexer (TOAD). J Comput Electron 18, 1423–1434 (2019a). https://doi.org/10.1007/s10825-019-01393-5

    Article  Google Scholar 

  • Maji, K., Mukherjee, K., Raja, A.: Frequency encoded all optical tri-state logic gates NOT and NAND using semiconductor optical amplifier based interferometric switches. Nanosci. Nanotechnol. Asia 10(4), 369–380 (2020)

    Article  Google Scholar 

  • Maji, K., Mukherjee, K., Mandal, M.K.: Analysis of all optical dual control dual SOA TOAD based 2’s complement generator. In: 2020 IEEE VLSI Device Circuit and System (VLSI DCS), Kolkata, India, 2020, pp. 119–123. doi:https://doi.org/10.1109/VLSIDCS47293.2020.9179909

  • Maji, K., Mukherjee, K., Raja, A.: Design and performance analysis of all optical 4-bit parity generator and checker using dual-control dual SOA terahertz optical asymmetric demultiplexer (DCDS-TOAD), J. Opt. Commun. (Published online ahead of print 2020), 000010151520190098 (2020). doi: https://doi.org/https://doi.org/10.1515/joc-2019-0098

  • Mallick, K., Mukherjee, R., et al.: Bidirectional hybrid OFDM based Wireless-over-fiber transport system using reflective semiconductor amplifier and polarization multiplexing Technique. Int. J. Electron. Commun. 96, 260–266 (2018)

    Article  Google Scholar 

  • Mandal, A.K.: Full-optical TOAD based Walsh-Hadamard code generation. Opt Quant Electron 49, 1–13 (2017). https://doi.org/10.1007/s11082-017-1130-4

    Article  Google Scholar 

  • Mandal, G.C., Mukherjee, R., et al.: Next-generation bidirectional Triple-play services using RSOA based WDM Radio on Free-Space Optics PON. Opt. Commun. 411, 138–142 (2018)

    Article  ADS  Google Scholar 

  • Mandal, P., Mallick, K., Dutta, B., et al.: Mitigation of Rayleigh backscattering in RoF-WDM-PON employing self coherent detection and bi-directional cross wavelength technique. Opt Quant Electron 53, 1–13 (2021). https://doi.org/10.1007/s11082-020-02720-y

    Article  Google Scholar 

  • Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals. Optics Commun. 402(1), 36–40 (2017)

    Article  ADS  Google Scholar 

  • Mukherjee, K.: Tera bit per second all optical 4 bit digital to analog converter using quantum dot semiconductor optical amplifier. Accepted for publication in Journal of Computational Electronics, Springer

  • Mukherjee, K.: Tera hertz Optical Asymetric Demultiplexer(TOAD) using quantum dot Semiconductor Optical Amplifier, Presented on International Conference on Evolving Materials and Nanotechnology for Sustainable Development, CIT, Kokrajhar (2020)

  • Mukherjee, K., Maji, K., Mandal, M.K.: Design and analysis of all- optical dual control dual SOA Tera Hertz asymmetric demultiplexer based half adder. Opt Quant Electron 52, 1–15 (2020). https://doi.org/10.1007/s11082-020-02522-2

    Article  Google Scholar 

  • Oda, S., Maruta, A.: All-optical digital-to-analog conversion using nonlinear optical loop mirrors. IEEE Photonics Technol. Lett. 18(5), 703–705 (2006). https://doi.org/10.1109/LPT.2006.871155

  • Okada, T., Ohtsuki, T., Kobayashi, R., Matsuura, M.: Photonic digital-to-analog conversion based on blue chirp spectral slicing using a quantum-dot SOA. In: 2019 24th Optoelectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, pp. 1–3 (2019). doi: https://doi.org/10.23919/PS.2019.8818023

  • Ortiz-Cornejo, J., Morel, P., Azou, S., Pardiñas-Mir, J.: A numerical assessment of an effective envelope-tracking semiconductor optical amplifier design for coherent-optical OFDM transmission. Opt. Commun. (2020). https://doi.org/10.1016/j.optcom.2019.124474,hal-02390882

    Article  Google Scholar 

  • Rakshit, J.K., Roy, J.N.: Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photon Netw Commun 34, 84–92 (2017). https://doi.org/10.1007/s11107-016-0664-x

    Article  Google Scholar 

  • Renaudier, J.: Recent advances in ultra-wideband WDM transmission based on semiconductor optical amplifiers. In: Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), paper Tu3F.5

  • Rostami, A., Baghban, H., Maram, R.: Nanostructure Semiconductor Optical Amplifier. Springer, Berlin (2011). Doi:https://doi.org/10.1007/978-3-642-14925-2

  • Safari-Anzabi, K., Habibzadeh-Sharif, A., Connelly, M.J., Rostami, A.: Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach-Zehnder interferometer. Opt. Laser Technol. 135, 1–9 (2021)

    Article  Google Scholar 

  • Sagara, M., Okada, T., Rui, W., Matsuura, M.: 4-bit resolution of photonic digital-to-analog conversion by frequency Chirp in a QD-SOA. In: 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, pp. 1–3 (2020). doi: https://doi.org/10.1109/OECC48412.2020.9273640

  • Saruwatari, M.: All-optical signal processing for terabit/second optical transmission. IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000). https://doi.org/10.1109/2944.902190

    Article  ADS  Google Scholar 

  • Scaffardi, M., Lazzeri, E., Fresi, F., Poti, L., Bogoni, A.: Analog-to-digital conversion exploiting XGM in SOA-based modular blocks. In: LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Acapulco, pp. 735–736 (2008). doi: https://doi.org/10.1109/LEOS.2008.4688830

  • Sokoloff, J.P., Prucnal, P.R., Glesk, I., Kane, M.: A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technol. Lett. 5(7), 787–790 (1993). https://doi.org/10.1109/68.229807

    Article  ADS  Google Scholar 

  • Stubkjaer, K.E.: Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). https://doi.org/10.1109/2944.902198

    Article  ADS  Google Scholar 

  • Wang, V., Baby, V., Tong, W., Xu, L., Friedman, M., Runser, R., Glesk, I., Prucnal, P.: A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexer (TOAD). Opt. Express 10, 15–23 (2002). https://doi.org/10.1364/OE.10.000015

    Article  ADS  Google Scholar 

  • Yang, L., Ding, J., Chen, Q., Zhou, P., Zhang, F., Zhang, L.: Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators. Opt. Lett. 39(19), 5736–5739 (2014)

    Article  ADS  Google Scholar 

  • Zhang, X., Dutta, N.K.: Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers. J. Mod. Opt. 65(2), 166–173 (2018). https://doi.org/10.1080/09500340.2017.1382595

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, F., Gao, B., Ge, X., Pan, S.: Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing. Opt. Eng. 55(3), 1–4 (2016)

    Article  Google Scholar 

  • Zhang, T., Qiu, Q., Fan, Z., Su, J., Xu, M.: Experimental study on a 4-b serial optical digital to analog convertor. IEEE Photonics J. 10(2), 1–9 (2018). https://doi.org/10.1109/JPHOT.2018.2818126

    Article  Google Scholar 

  • Zhang, X., Thapa, S., Dutta, N.K.: All-optical logic gates based on quantum-dot semiconductor optical amplifier. Int. J. High Speed Electron. Syst. 27(01n02), 19–29 (2018). https://doi.org/10.1142/s012915641840013x

    Article  Google Scholar 

  • Zhang, T., Qiu, Q., Su, J., Fan, Z., Xu, M.: Optical assisted digital-to-analog conversion using dispersion-based wavelength multiplexing. Opt. Commun. 432, 44–48 (2019). https://doi.org/10.1016/j.optcom.2018.09.025

    Article  ADS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Dutta, S., Roy, S. et al. All-Optical digital to analog converter using Tera Hertz Optical Asymmetric Demultiplexer based on quantum dot semiconductor optical amplifier. Opt Quant Electron 53, 242 (2021). https://doi.org/10.1007/s11082-021-02900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02900-4

Keywords

Navigation