Skip to main content
Log in

Annular-shaped beam for the mitigation of thermal lensing effects in Nd:YAG solid-state lasers

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The present work aims to develop a model to mitigate the thermal lensing effects in laser diode-pumped solid-state laser systems. Using an annular-shaped beam, a virtual solid-state laser with a cylindrical form was simulated in double-end pumping geometry. At a pump ratio of (0.6), the results demonstrate that a pump light with an annular shape has an even better distribution for reducing the thermal lensing effect with a slope of 0.09 m−1/W as compared to 0.07 m−1/W slope for the top-hat distribution. Additionally, the annular-shaped pump beam provides the advantage of uniform pumping across the gain medium, which improves the overall efficiency and performance of the laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Kalantarifard, H. Nadgaran, P. Elahi, The analytical and numerical investigation of thermo-optic effects in double-end-pumped solid state lasers. Int. J. Phys. Sci. 4(6), 385–389 (2009)

    Google Scholar 

  2. X. Wu, L. Tang, C.L. Hardin, C. Dames, Y. Kodera, J.E. Garay, Thermal conductivity and management in laser gain materials: a nano/microstructural perspective. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0073507

    Article  Google Scholar 

  3. A. Konyashkin, O. Ryabushkin, A. Korolkov, D. Belogolovskii, Solid state laser medium temperature distribution control under lasing condition. SPIE Photon. Europe (2018). https://doi.org/10.1117/12.2307251

    Article  Google Scholar 

  4. M. Mojahedi, H. Shekoohinejad, Thermal stress analysis of a continuous and pulsed end-pumped Nd:YAG rod crystal using non-classic conduction heat transfer theory. Brazilian J. Phys. 48(1), 46–60 (2018). https://doi.org/10.1007/s13538-017-0538-4

    Article  ADS  Google Scholar 

  5. M.Y. Ghadban, K.S. Shibib, M.J. Abdulrazzaq, Analytical model of transient thermal effects in microchip laser crystal. AIP Conf. Proceed. (2020). https://doi.org/10.1063/5.0000277

    Article  Google Scholar 

  6. S. Antipov et al., Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power”. Opt. Exp. 28, 15232 (2020). https://doi.org/10.1364/oe.388794

    Article  Google Scholar 

  7. D.A.O. Modena, A.C.G. Miranda, C. Grecco, R.E. Liebano, R.C.T. Cordeiro, R.M. Guidi, Efficacy and safety of ND:YAG 1064 nm lasers for photoepilation: a systematic review. Lasers Med. Sci. 35(4), 797–806 (2020). https://doi.org/10.1007/s10103-019-02939-6

    Article  Google Scholar 

  8. A.A. Menazea, A.M. Abdelghany, Precipitation of silver nanoparticle within silicate glassy matrix via Nd:YAG laser for biomedical applications”. Radiat. Phys. Chem. 174, 108958 (2020). https://doi.org/10.1016/j.radphyschem.2020.108958

    Article  Google Scholar 

  9. L.A. Ngiejunbwen, J. ShangGuan, E. Asamoah, Y. Ren, Y. Ye, Y. Tong, Experimental investigation of sheet metal forming of Aluminum 2024 using nanosecond pulsed Nd: YAG laser”. Opt. Laser Technol. 133, 106528 (2021). https://doi.org/10.1016/j.optlastec.2020.106528

    Article  Google Scholar 

  10. F.Z. Jasim, M.J. Abdul-Razzak, H.M. Ahmed, Design of GaN-based VCSEL with high performance. Optoelectron. Adv. Mater. Rapid Commun. 8(1–2), 7–9 (2014)

    Google Scholar 

  11. P. Elahi, S. Morshedi, The double-end-pumped cubic Nd:YVO4 laser: temperature distribution and thermal stress. Pramana - J. Phys. 74(1), 67–74 (2010). https://doi.org/10.1007/s12043-010-0008-9

    Article  ADS  Google Scholar 

  12. P. Shang, L. Bai, S. Wang, D. Cai, B. Li, Research progress on thermal effect of LD pumped solid state laser”. Opt. Laser Technol. 157, 108640 (2023). https://doi.org/10.1016/j.optlastec.2022.108640

    Article  Google Scholar 

  13. D. Lin, W. Andrew Clarkson, End-pumped Nd:YVO_4 laser with reduced thermal lensing via the use of a ring-shaped pump beam”. Opt. Lett. 42, 2910 (2017). https://doi.org/10.1364/ol.42.002910

    Article  ADS  Google Scholar 

  14. M. Catela et al., “Doughnut-shaped and top hat solar laser beams numerical analysis,” energies, (2021).

  15. Y. Wang, W. Yang, H. Zhou, M. Huo, Y. Zhen, Temperature dependence of the fractional thermal load of Nd:YVO_4 at 1064 nm lasing and its influence on laser performance. Opt. Exp. 21(15), 18068 (2013). https://doi.org/10.1364/oe.21.018068

    Article  Google Scholar 

  16. L. Cini, J.I. Mackenzie, Analytical thermal model for end-pumped solid-state lasers. Appl. Phys. B Lasers Opt. (2017). https://doi.org/10.1007/s00340-017-6848-y

    Article  Google Scholar 

  17. Y. Song, N. Zong, Z. Chen, X. Wang, Y. Bo, Q. Peng, Temperature-dependent thermal, spectroscopic properties, and laser performance of Nd:YVO4 crystal. Appl. Phys. B Lasers Opt. 129(5), 1–15 (2023). https://doi.org/10.1007/s00340-023-08008-9

    Article  ADS  Google Scholar 

  18. M.J. Abdul Razzaq, A.K. Abass, W.Y. Nassir, Thermal lensing reduction in conventional and composite Nd:YAG laser rod”. Eng. Tech. J. 34, 2031–2035 (2016)

    Article  Google Scholar 

  19. N.M. Al-Hosiny, A.A. El-Maaref, R.M. El-Agmy, Mitigation of thermal effects in end pumping of Nd:YAG and composite YAG/Nd:YAG laser crystals, modelling and experiments. Tech. Phys. 66(12), 1341–1347 (2021). https://doi.org/10.21883/jtf.2021.08.51103.38-21

    Article  Google Scholar 

  20. Y. Zhongsheng, L. Jiao, L. Jun, X. Jianguo, C. Jiabin, Study of the distributed thermal lens of LD end pumped rectangular gain. Opt. Exp. 21(20), 23197 (2013). https://doi.org/10.1364/oe.21.023197

    Article  Google Scholar 

  21. B. Fang, H. Zhulong, L. Jingliang, C. Xinyu, W. Chunting, J. Guangyong, Thermal analysis of double-end-pumped Tm:YLF laser. Laser Phys. 25(7), 75003 (2015). https://doi.org/10.1088/1054-660X/25/7/075003

    Article  Google Scholar 

  22. J. Liu, X. Chen, Y. Yu, C. Wu, F. Bai, G. Jin, Analytical solution of the thermal effects in a high-power slab Tm:YLF laser with dual-end pumping. Phys. Rev. A 93(1), 1–7 (2016). https://doi.org/10.1103/PhysRevA.93.013854

    Article  Google Scholar 

  23. H.M. Ahmed, M.J.A. Razzaq, A.K. Abass, Numerical thermal model of diode double-end-pumped solid state lasers. Int. J. Nanoelectron. Mater. 11(4), 473–480 (2018)

    Google Scholar 

  24. M.J. AbdulRazzaq, A.Z. Mohammed, A.K. Abass, K.S. Shibib, A new approach to evaluate temperature distribution and stress fracture within solid state lasers. Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-2012-8

    Article  Google Scholar 

  25. C. Xinyu, L. Jingliang, W. Chunting, W. Ruiming, J. Guangyong, Thermal effects analysis of high-power slab Tm:YLF laser with dual-end-pumped based on COMSOL multiphysics. Integr. Ferroelectr. 210(1), 197–205 (2020). https://doi.org/10.1080/10584587.2020.1728823

    Article  ADS  Google Scholar 

  26. M.J. Abdul Razzaq, K.A. Hubeatir, Analysis of thermal effects within cylindrical shape solid-state laser rod”. Mater. Sci. Forum 1002, 264–272 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1002.264

    Article  Google Scholar 

  27. D.J. Kim, S.H. Noh, S.M. Ahn, J.W. Kim, Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers”. Opt. Exp. 25, 14668 (2017). https://doi.org/10.1364/oe.25.014668

    Article  Google Scholar 

  28. M. Isidro-ojeda et al., “Thermal and thermoelastic response of materials with thick-disk geometry excited by a ring-shaped laser beam,” Appl. Phys., (2021).

  29. Z.A. Khazal, M.J. AbdulRazzaq, R.K. Ibrahim, Reducing temperature distribution in solid-state lasers utilizing annular beam profile: modeling and simulation”. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01168-z

    Article  Google Scholar 

  30. D. Lin, “Doughnut-shaped beam generation in solid-state and fibre lasers. University of Southampton”, Faculty of Physical Sciences and Engineering, Doctoral Thesis, 218pp. (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Jalal AbdulRazzaq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazal, Z.A., Ibrahim, R.K. & AbdulRazzaq, M.J. Annular-shaped beam for the mitigation of thermal lensing effects in Nd:YAG solid-state lasers. J Opt (2023). https://doi.org/10.1007/s12596-023-01378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01378-5

Keywords

Navigation