Skip to main content

A Review on “Designs and Fabrication” for the Next Generation of Organic Solar Cells Technology

  • Conference paper
  • First Online:
Recent Developments in Mechanics and Design

Abstract

An interest in and advanced research in organic solar cells has grown due to their low-cost and flexible use in power devices, their environmental benefits, and their outstanding promise to be an economical and efficient technology for utilizing solar energy as a sustainable power resource. Much attention has recently been drawn to the use of organic solar cells with a bulk heterojunction active layer of a non-fullerene acceptor material, which has technical advantages for overcoming photon harvesting, charge recombination, and lower manufacturing costs. Efficiency, cost, and stability are the primary factors in these organic-based solar cells. However, to stay competitive with traditional solar cells, organic solar cell technology must be innovative and lead to a breakthrough to fill the gap in renewable energy. This article presents findings focusing on the significance of optimizing the organic solar cell concerning its organic semiconductor morphology and optical properties, power conversion efficiency, device stability, fabrication processability, and the organic solar cell’s enhanced performance with parallel tandem configuration about enhanced device development engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.ipcc.ch/sr15/. Accessed June 2021

  2. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf. Accessed June 2021

  3. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401

    Article  Google Scholar 

  4. Qu B, Forrest SR (2018) Continuous roll-to-roll fabrication of organic photovoltaic cells via interconnected high-vacuum and low-pressure organic vapor phase deposition systems. Appl Phys Lett 113(5):053302

    Article  Google Scholar 

  5. Abbel R, Galagan Y, Groen P (2018) Roll‐to‐roll fabrication of solution-processed electronics. Adv Eng Mater 20:1701190

    Google Scholar 

  6. Chamberlain GA (1983) Sol Cells 8:47; Tang CW (1986) Appl Phys Lett 48:183

    Google Scholar 

  7. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    Article  Google Scholar 

  8. Hiramoto M, Fujiwara H, Yokoyama M (1991) Three-layered organic solar cell with a photoactive interlayer of code posited pigments. Appl Phys Lett 58(10):1062–1064

    Article  Google Scholar 

  9. Zhang G et al (2018) No fullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev 118(7):3447–3507

    Google Scholar 

  10. Tong Y (2020) Progress of the key materials for organic solar cells. Sci China Chem 63(6):758–765

    Article  Google Scholar 

  11. Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE (2001) Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett 79(18):2996–2998

    Article  Google Scholar 

  12. Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Ade H et al (2018) Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat Mater 17(3):253–260

    Article  Google Scholar 

  13. Maennig B (2004) Organic p-i-n solar cells. Appl Phys A 79(1):1–14

    Article  Google Scholar 

  14. Di Carlo Rasi D, Janssen RAJ (2019) Advances in solution‐processed multijunction organic solar cells. Adv Mater 31(10):1806499

    Google Scholar 

  15. Xiong J, Xu J, Jiang Y, Xiao Z, Bao Q, Hao F, Ding L (2020) Fused-ring bislactone building blocks for polymer donors. Sci Bull 65:1792

    Article  Google Scholar 

  16. Shirakawa H (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580

    Article  Google Scholar 

  17. Blom PWM (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566

    Google Scholar 

  18. Nunzi J-M (2002) Organic photovoltaic materials and devices. C R Phys 3(4):523–542

    Article  Google Scholar 

  19. Carsten B (2011) Stille polycondensation for the synthesis of functional materials. Chem Rev 111(3):1493–1528

    Article  Google Scholar 

  20. Jørgensen M, Carle JE, Søndergaard RR, Lauritzen M, Dagnres-Hansen A, Byskov SL, Andersen TR, Larsen-Olsen TT, Bottiger APL, Andreasen B et al (2013) The state of organic solar cells—a meta analysis. Sol Energy Mater Sol Cells 119:84–93

    Google Scholar 

  21. Etxebarria I, Ajuria J, Pacios R (2015) Solution-process able polymeric solar cells: a review on materials strategies and cell architectures to overcome 10. Org Electron 19:34–60

    Article  Google Scholar 

  22. Hemavathi B, Ahipa TN, Pai RK (2015) Polymer design for solar cell—current trend and future scenario. Eur Polym J 72:309–340

    Google Scholar 

  23. Kim Y, Lim E (2014) Development of polymer acceptors for organic photovoltaic cells. Polymers (Basel) 6(2):382–407

    Article  Google Scholar 

  24. Taretto K, Rau U (2004) Modeling extremely thin absorber solar cells for optimized design. Prog Photovolt Res Appl 12:573–591

    Article  Google Scholar 

  25. Ray B, Nair PR, Alam MA Unraveling the role of morphology on organic solar cell performance. 47906:1–10

    Google Scholar 

  26. Luceño-Sánchez JA, Díez-Pascual AM, Peña Capilla R (2019) Materials for photovoltaics: state of art and recent developments. Int J Mol Sci 20(4):976

    Google Scholar 

  27. Iwan A, Chuchmała A (2012) Perspectives of applied graphene: polymer solar cells. Prog Polym Sci 37(12):1805–1828

    Article  Google Scholar 

  28. Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88

    Google Scholar 

  29. Tessema Mola G, Mbuyise XG, Oseni SO, Dlamini WM, Tonui P, Arbab EA, Maaza M et al (2018) Nanocomposite for solar energy application. In: Nano hybrids and composites, vol 20. Trans Tech Publications Ltd., pp 90–107

    Google Scholar 

  30. Spanggaard H, Krebs FC (2004) A brief history of the development of organic and polymeric photovoltaic. Sol Energy Mater Sol Cells 83(2–3):125–146

    Article  Google Scholar 

  31. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940

    Article  Google Scholar 

  32. You J, Dou L, Hong Z, Li G, Yang Y (2013) Recent trends in polymer tandem solar cells research. Prog Polym Sci 38(12):1909–1928

    Article  Google Scholar 

  33. Prall H-J (2005) Tandem solar cells. PhD thesis, Johannes Kepler Universität Linz

    Google Scholar 

  34. Kim JY (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225

    Article  Google Scholar 

  35. Niggemann M, Riede M, Gombert A, Leo K (2008) Light trapping in organic solar cells. Phys Status Solidi 205:2862–2874

    Article  Google Scholar 

  36. Duché D, Simon JJ, Escoubas L, Torchio P, Le Rouzo J, Vervisch W, Flory F, Cézanne UP (2009) Photonic crystals for light trapping within organic solar cells. pp 4–7

    Google Scholar 

  37. van Sark WGJHM (2013) Luminescent solar concentrators—a low-cost photovoltaic alternative. Renew Energy 49:207–210

    Article  Google Scholar 

  38. Norrman K (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Am Chem Soc 132(47):16883–16892

    Google Scholar 

  39. Rivaton A, Tournebize A, Gaume J, Bussière PO, Gardette JL, Therias S (2014) Photostability of organic materials used in polymer solar cells. Polym Int 63(8):1335–1345

    Article  Google Scholar 

  40. Klumbies (2014) Influence of calcium corrosion on the performance of an adjacent permeation barrier. Rev Sci Instrum 85(1):016104

    Google Scholar 

  41. Bruner C, Dauskardt R (2014) Role of molecular weight on the mechanical device properties of organic polymer solar cells. Macromolecules 47(3):1117–1121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kant, N., Singh, P. (2023). A Review on “Designs and Fabrication” for the Next Generation of Organic Solar Cells Technology. In: Hegde, S., Mishra, A., Singh, D.K. (eds) Recent Developments in Mechanics and Design. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4140-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4140-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4139-9

  • Online ISBN: 978-981-19-4140-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics