Skip to main content
Log in

A study on optical, spectroscopic and structural properties of copper-doped calcium lithium borate glasses

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this work, the physical properties of calcium lithium borate glasses are investigated upon the inclusion of Cu+2 ion dopant. UV–Vis–NIR, photoluminescence, FTIR, and XRD techniques were, respectively, used in this study. From the optical absorption response of the samples, direct and indirect energy band gaps were calculated and they were found to be in the ranges of 3.57–3.28 eV and 3.78–3.6 eV, respectively. Results showed that the refractive index was increased from 2.258 to 2.326 with the increase in Cu2O concentration. Also, three main emission bands were observed in the luminescence spectra at around 399, 483, and 575 nm, which are correlated with the change in the copper concentration. Results of the FTIR spectroscopy showed various peaks in the ranges of 1383–1415 cm−1 and 1062–1076 cm−1, which can be attributed to the trigonal and tetrahedral stretching vibrations of BO3 and BO4 units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Pal, B. Roy, M. Pal, Structural characterization of borate glasses containing zinc and manganese oxides. J. Mod. Phys. 2, 1062–1066 (2011)

    Article  Google Scholar 

  2. S. Shailajha, K. Geetha, P. Vasantharani, S.P. Sheik Abdul Kadhar, Effects of copper on the preparation and characterization of Na-Ca-P borate glasses. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 138, 846–856 (2015)

    Article  ADS  Google Scholar 

  3. Y. Tetsuji, N. Kunimine, S. Shibata, M. Yamane, Structural investigation of sodium borate glasses and melts by raman spectroscopy, II,—conversion between BO4 and BO2O—units at high temperature. J. Non-Cryst. Solids. 321, 147–156 (2003)

    Article  ADS  Google Scholar 

  4. A.T. Madej, K.C. Kowalska, M. Laczka, The effect of silicate network modifiers on colour and electron spectra of transition metal ions. Opt. Mater. 32, 1456–1462 (2010)

    Article  ADS  Google Scholar 

  5. P.V. Reddy, C.L. Kanth, V.P. Kumar, N. Veeraiah, P. Kistaiah, Optical and thermoluminescence properties of R2O–RF–B2O3 glass systems doped with MnO. J. Non-Cryst. Solids. 351, 3752–3759 (2005)

    Article  ADS  Google Scholar 

  6. A. Haydar, W. Husain, R. Hussin, H. Ali, Y. Alajerami, M.A. Saeed, Thermoluminescence properties of the Cu-doped lithium potassium borate glass. Appl. Radiat. Isot. 90, 35–39 (2014). https://doi.org/10.1016/j.apradiso.2014.01.012

    Article  Google Scholar 

  7. N.S. Rao, M. Purnima, S. Bale, S.K. Kumar, S. Rahman, Spectroscopic investigations of Cu2+ in  Li2O–Na2O–B2O3–Bi2O3 glasses. Bull. Mater. Sci. 29, 365–370 (2006) 

    Article  Google Scholar 

  8. H. El-Batal, Z. El-Mandouh, H. Zayed, S. Marzouk, G. El-Komy, A. Hosny, Optical and infrared properties of lithium diborate glasses doped with copper oxide. J. Indian Pure Phys. 50, 398–404 (2012)

    Google Scholar 

  9. H.A. ElBatal, A.M. Abdelghany, I.S. Ali, Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma-irradiation. J. Non-Cryst. Solids. 358, 820–825 (2012)

    Article  ADS  Google Scholar 

  10. I. Rammadhan, S. Taha, H. Wagiran, Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays. J. Lumin. 186, 117–122 (2017)

    Article  Google Scholar 

  11. N.A. Zarifah, M.K. Halimah, M. Hashim, B.Z. Azmi, W.M. Daud, Magnetic behaviour of (Fe2O3)x (TeO2)1–x glass system due to iron oxide. Chalcogenide Letters 7, 565–571 (2010)

    Google Scholar 

  12. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  ADS  Google Scholar 

  13. F.F. Muhammad, M.Y. Yahya, F. Aziz, M.A. Rasheed, K. Sulaiman, Tuning the extinction coefficient, refractive index, dielectric constant and optical conductivity of Gaq3 films for the application of OLED displays technology. J. Mater. Sci. Mater. Electron. 28, 14777–14786 (2017). https://doi.org/10.1007/s10854-017-7347-y

    Article  Google Scholar 

  14. J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (The Royal Science of Chemistry, Cambridge, 2005). ISBN: 978-1-84755-116-0

  15. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational-spectra of magnesium–sodium–borate glasses. 2. Raman and midinfrared investigation of the network structure. J. Phys. Chem. 91, 1073–1079 (1987). https://doi.org/10.1021/j100289a014

    Article  Google Scholar 

  16. J. Krogh-Moe, the structure of vitreous and liquid boron oxide. J. Non-Cryst. Solids. 1, 269–284 (1969). https://doi.org/10.1016/0022-3093(69)90025-8

    Article  ADS  Google Scholar 

  17. L. Stoch, M. Sroda, Infrared spectroscopy in the investigation of oxide glasses structure. J. Mol. Struct. 511, 77–84 (1999). https://doi.org/10.1016/S0022-2860(99)00146-5

    Article  ADS  Google Scholar 

  18. G. Padmaja, P. Kistaiah, Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect. J. Phys. Chem. A. 113, 2397–2404 (2009)

    Article  Google Scholar 

  19. S. Bale, N. Srinivas Rao, R. Syed, Effect of alkaline earths on spectroscopic and structural properties of Cu 2 + ions-doped lithium. Solid State Sci 10, 326 (2008)

    Article  ADS  Google Scholar 

  20. I. Ardelean, S. Cora, D. Rusu, EPR and FT-IR spectroscopic studies of Bi2O3–B2O3 CuO glasses. Phys. B 403, 3682–3685 (2008)

    Article  ADS  Google Scholar 

  21. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids. 355, 348–355 (2009)

    Article  ADS  Google Scholar 

  22. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. Singh, G. Bhikshamaiah, Physical and optical properties of Bi2O3–B2O3 glasses. J. Non-Cryst. Solids. 354, 5573–5579 (2008)

    Article  ADS  Google Scholar 

  23. Y.B. Saddeek, M.S. Gaafar, Properties of tellurite glass doped with ytterbium oxide for optical applications. Mater. Chem. Phys. 115, 280–286 (2009)

    Article  Google Scholar 

  24. R.D. Husung, R.H. Doremus, The infrared transmission spectra of four silicate glasses before and after exposure to water. J. Mater. Res. 5, 2209–2217 (1990). https://doi.org/10.1557/JMR.1990.2209

    Article  ADS  Google Scholar 

  25. N.F. Mot, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Oxford University Press, Oxford, 1979), p. 273

    Google Scholar 

  26. A. Klonkowski, Bond characteristics of phosphate glasses of the M (II) O-P2O5 type. I: The  extreme position of strontium phosphate glasses. Phys. Chem. Glasses. 26, 11–16 (1985) 

    Google Scholar 

  27. H. Aboud, H. Wagiran, R. Hussin, S. Saber, M.A. Saeed, Photoluminescence and thermoluminescence properties of SnO2 nanoparticles embedded in Li2O–K2O– B2O3 with Cu- doping. Chin. Opt. Lett. 11, 091603 (2013)

    Article  ADS  Google Scholar 

  28. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall. 45, 219–250 (2010)

    Google Scholar 

  29. G.P. Singh, S. Kaur, P. Kaur, D.P. Singh, Modification in structural and optical properties of ZnO, CeO2 doped Al2O3–PbO–B2O3 glasses. Phys. B 407, 1250–1255 (2012)

    Article  ADS  Google Scholar 

  30. M.M. Ahmead, C.A. Hogarth, M.M. Khan, A study of the electrical and optical properties of The GeO2–TeO2 glass system. J. Mater. Sci. Lett. 19, 4040 (1984)

    ADS  Google Scholar 

  31. V. Dimitrov, T. Komatshu, Classification of simple oxide: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  ADS  Google Scholar 

  32. M. Abdal-Baki, F.A. Abdel-Wahab, A. Radi, F. El-Diasty, Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids. 68(8), 1457–1470 (2007). https://doi.org/10.1016/j.jpcs.2007.03.026

    Article  ADS  Google Scholar 

  33. F. Nawas, M.R. Sahar, S.K. Ghoshal, R.J. Amjad, M.R. Dousti, A. Awang, Spectral investigation of Sm3+/Yb3+co-doped sodium tellurite glass. Chin. Opt. Lett. 11, 61605 (2013)

    Article  Google Scholar 

  34. J.E. Shelby, J. Ruller, Properties and structure of lithium germinate glasses. Phys. Chem. Glasses 28, 262–268 (1987)

    Google Scholar 

  35. K. Annapurna, S. Buddhudu, Characterization of fluorophosphates optical glasses. J. Solid State Chem. 93, 454–460 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank the Research Center for Studies and their Promising Technologies, Koya University, Koya, Erbil, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Rammadhan Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I.R. A study on optical, spectroscopic and structural properties of copper-doped calcium lithium borate glasses. J Opt 49, 556–563 (2020). https://doi.org/10.1007/s12596-020-00641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00641-3

Keyword

Navigation